
- •Типы взаимосвязи между явлениями. Функц. И коррел. Связь.
- •2. Типы данных и типы моделей. Специфика экон. Данных. Системы эконометрич. Уравнений.
- •3. Ковариация между переменными. Формула расчета ковариации.
- •4.Коэффициент парной корреляции
- •5.Качественная оценка коэф. Парной корреляции. Шкала Чеддока.
- •6. Оценка значимости линейного коэффициента корреляции с помощью t-критерия Стьюдента.
- •7. Матрица коэффициентов парной корреляции, ее структура, экономическая сущность.
- •8. Коэффициент множественной корреляции, приделы его измерения.
- •10. Частный коэффициент множественной корреляции, пределы его измерения
- •11.Оценка тесноты нелинейной связи, индекс корреляции
- •12.Регрессионные модели. Общие предпосылки рег. Анлиза.
- •13. Алгоритм построения и анализа регрессионных моделей
- •14. Основные предпосылки мнк
- •15. Свойства оценок параметров регрессионной модели
- •16. Оценка параметров регрессионного уравнения с помощью метода наименьших квадратов
- •17. Оценка параметров линейной модели парной регрессии. Расчетные формулы
- •18. Матричная форма модели парной регресии и формула расчета ее парметров
- •19. Оценка качества уравнения регрессии
- •20. Коэффициент детерминации и коэффициент корреляции, их расчет в модели парной регересии.
- •22. Проверка значимости уравнения регрессии в целом. F-критерий Фишера.
- •23. Уровень значимости и степени свободы пр проверке значимости уравнения регрессии.
- •26. Оценка статистической значимости коэффициентов регрессии
- •27. Доверительные интервалы параметров регрессии
- •41. Способы обнаружения мультиколлинеарности. Обнаружение мультиколлинеарности с помощью алгоритма Феррара-Флобера: критерий Пирсона , критерий Фишера, критерий Стьюдента.
- •42. Понятие гомо- и гетероскедастичности
- •43. Критерий обнаружения гетероскедастичности.
- •44. Тест Гольдфельда-Квандта для обнаружения гетероскедастичности.
- •45. Обобщенный мнк и его отличие от классического мнк (метод Эйткена).
- •46. Автокорреляция в регрессионных моделях. Причины, последствия, методы устранения.
- •47. Метод обнаружения автокорреляции. Метод рядов для обнаружения автокорреляции.
- •48. Критерий Дарбина-Уотсона.
- •49. Коэффициент автокорреляции первого порядка и его применение для раскрытия неопределенности в критерии Дарбина-Уотсона.
- •50. Регрессионные уравнения с переменной структурой. Фиктивные переменные. Виды фиктивных переменных, преимущества использования.
- •51. Использование фиктивных переменных для исследования структурных изменений. Моделирование сезонности. Количество бинарных переменных при к градациях.
- •52. Модель задачи об оптимальном использовании средств, представленной в виде регрессионной модели
- •57. Система рекурсивных регрессионных уравнений. Ее формальная запись. Метод решения.
- •59. Приведенная форма модели одновременных регрессионных уравнений. Причины, вызывающие необходимость построения приведенной формы модели.
- •64. Алгоритм косвенного метода решения систем одновременных уравнений.
- •65. Алгоритм двухшагового метода наименьших квадратов для решения систем одновременных регрессионных уравнений
- •66. Понятие динамического ряда, временного ряда. Его обозначение. Составляющие временного ряда. Виды моделей представления временного ряда.
- •67. Процедуры предварительного анализа временных рядов.
- •72 Моделирование экономических процессов, подверженных колебаниям. Критерии проверки наличия сезонных колебаний.
- •73 Фильтрация компонентов тренд-сезонных колебаний временного ряда
- •74 Адаптивные модели прогнозирования: сс модель и ар модель
7. Матрица коэффициентов парной корреляции, ее структура, экономическая сущность.
Если признаков много, то получают матрицу коэффициента парной корреляции.
По матрице коэффициентов корреляции можно судить о тесноте связи факторов с результативным признаком и между собой. Информацию о парной зависимости может дать матрица коэффициентов парной корреляции между объясняющими переменными:
Начальная проверка предусматривает нахождение определителя (детерминанта) матрицы, который называется детерминантом корреляции и обозначается det(r).Числовые значения детерминанта корреляции удовлетворяют условию: det(r)∈ [0,1]
8. Коэффициент множественной корреляции, приделы его измерения.
Определение тесноты связи одной случайной величины с совокупностью остальных величин, включенных в анализ, решается с помощью выборочного коэффициента множественной корреляции, который вычисляется по формуле:
;
где
– определитель корреляционной матрицы
,
– алгебраическое дополнение элемента
матрицы
,
- диагональный элемент матрицы
.
Коэффициент множественной корреляции является величиной положительной, принимающей значения в интервале от 0 до 1.
9. Выборочный множественный коэф. Детерминации и пров. Его знач. По крит. Фишера. Если использовать выборочную оценку значений соответствующих дисперсий, то получим фо. рмулу для выборочного коэффициента детерминации (который обычно и подразумевается под коэффициентом детерминации)
Коэффициент множественной детерминации характеризует, на сколько процентов построенная модель регрессии объясняет вариацию значений результативной переменной относительно своего среднего уровня, т. е. показывает долю общей дисперсии результативной переменной, объяснённой вариацией факторных переменных, включённых в модель регрессии.
Коэффициент множественной детерминации также называется количественной характеристикой объяснённой построенной моделью регрессии дисперсии результативной переменной. Чем больше значение коэффициента множественной детерминации, тем лучше построенная модель регрессии характеризует взаимосвязь между переменными.
Проверка значимости коэффициента множественной корреляции и детерминации с помощью f-критерия Фишера
Основная гипотеза состоит в предположении о незначимости частных коэффициентов корреляции, т. е.
Обратная или конкурирующая гипотеза состоит в предположении о значимости частных коэффициентов корреляции, т.е. Данные гипотезы проверяются с помощью F-критерия Фишера-Снедекора через коэффициент множественной детерминации.
Наблюдаемое значение F-критерия (вычисленное на основе выборочных данных) сравнивают со значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора, и называется критическим.
При проверке значимости коэффициента множественной корреляции критическое значение F-критерия определяется как Fкрит(a;k1;k2), где а – уровень значимости, k1=l–1 иk2=n–l – число степеней свободы, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров.
При проверке основной гипотезы вида Н0:R(y,xi)=0 наблюдаемое значение F-критерия Фишера-Снедекора рассчитывается по формуле:
где R2(y,xi) – коэффициент множественный детерминации.
При проверке основной гипотезы возможны следующие ситуации.
Если Fнабл>Fкрит, то с вероятностью а основная гипотеза о незначимости коэффициента множественной корреляции отвергается, и он признаётся значимым. В этой ситуации включение в модель регрессии всех исследуемых переменных считается обоснованным.
Если. Fнабл<=Fкрит, то основная гипотеза о незначимости коэффициента множественной корреляции принимается, и он признаётся незначимым. В этой ситуации построение модели регрессии на основе исследуемых переменных считается необоснованным.