Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_ekzamen_ekonometrika.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
23.75 Mб
Скачать

64. Алгоритм косвенного метода решения систем одновременных уравнений.

Косвенный метод наименьших квадратов используется для получения оценок неизвестных коэффициентов системы одновременных уравнений, удовлетворяющих свойствам эффективности, несмещённости и состоятельности.

Косвенный метод наименьших квадратов применяется только в том случае, если структурная форма системы одновременных уравнений является точно идентифицированной.

Алгоритм метода наименьших квадратов реализуется в три этапа:

1) на основе структурной формы системы одновременных уравнений составляется её приведённая форма, все параметры которой выражены через структурные коэффициенты;

2) приведённые коэффициенты каждого уравнения оцениваются обычным методом наименьших квадратов;

3) на основе оценок приведённых коэффициентов системы одновременных уравнений определяются оценки структурных коэффициентов через приведённые уравнения.

65. Алгоритм двухшагового метода наименьших квадратов для решения систем одновременных регрессионных уравнений

Основная идея ДМНК – на основе приведенной формы модели получить для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения.

Далее, подставив их вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифицируемого уравнения. Метод получил название двухшагового МНК, ибо дважды используется МНК: на первом шаге при определении приведенной формы модели и нахождении на ее основе оценок теоретических значений эндогенной переменной и на втором шаге применительно к структурному сверхидентифицируемому уравнению при определении структурных коэффициентов модели по данным теоретических (расчетных) значений эндогенных переменных.

Сверхидентифицируемая структурная модель может быть двух типов:

1) все уравнения системы сверхидентифицируемы;

2) система содержит наряду со сверхидентифицируемыми точно идентифицируемые уравнения.

Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.

66. Понятие динамического ряда, временного ряда. Его обозначение. Составляющие временного ряда. Виды моделей представления временного ряда.

Динамический ряд - ряд последовательных значений какого-либо статистического показателя, меняющихся во времени; широко используется при обработке материалов медико-биологических исследований

Временной ряд (ряд динамики) – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

1) факторы, формирующие тенденцию ряда;

2) факторы, формирующие циклические колебания ряда;

3) случайные факторы.

67. Процедуры предварительного анализа временных рядов.

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда. Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени. Величину сдвига называют лагом. Модели с лагами встречаются, когда зависимая переменная с запаздыванием реагирует на изменения независимой переменной. Например, – объём выпуска предприятия в год, может зависеть не только от инвестиций в этот год, но и от инвестиций предыдущих лет

и т. д. Поэтому, в более широком смысле, лаг – это время запаздывания влияния факторов.

Формула для расчета коэффициента автокорреляции имеет вид:

Эту величину называют коэффициентом автокорреляции уровней ряда 1-го порядка

Аналогично можно определить коэффициенты автокорреляции второго и т.д.

68. Метод выявления аномальных наблюдений. (Метод Ирвина)

69. Критерий проверки исходной информации на наличие тренда: критерий серий, основанных на медиане. Критерий восходящих и исходящих серий. Сравнение средних уровней ряда.

70. Метод простой и взвешенной скользящей средней при сглаживании временного ряда. Метод экспоненциального сглаживания.

71 Модели кривых роста

Кривые роста условно могут быть разделены на три класса в зависимости от того, какой тип динамики развития они хорошо описывают.

К I типу относятся функции, используемые для описания процессов с монотонным характером тенденции развития и отсутствием пределов роста. Ко II классу относятся кривые, описывающие процесс, который имеет предел роста в исследуемом периоде. Функции, относящиеся ко II классу, называются кривыми насыщения. Если кривые насыщения имеют точки перегиба, то они относятся к III типу кривых роста – к S-образным кривым. Эти кривые описывают два последовательных процесса (когда прирост зависит от уже достигнутого уровня): один с ускорением развития, другой – с замедлением.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]