- •Загальна характеристика сфер застосування електротехнічних матеріалів.
- •Поляризація діелектриків. Основні фізичні і технічні параметри, які характеризують поляризацію.
- •Основні види та механізми поляризації, їхні особливості. Класифікація діелектриків за видами поляризації.
- •Особливості спонтанної поляризації та її залежність від температури та частоти.
- •Залежність діелектричної проникності діелектриків з різною структурою від температури та частоти.
- •Основні класи активних діелектриків, особливості їх поляризації та області застосування.
- •Електропровідність твердих діелектриків. Вплив зовнішніх факторів на об’ємний та поверхневий питомі опори, методи їх вимірювання.
- •Електропровідність газів, несамостійна та самостійна провідність газів, струм насичення в газах.
- •Вплив зовнішніх факторів на діелектричні втрати.
- •Загальна характеристика явища пробою діелектриків. Види пробою.
- •Фізика електричного пробою в однорідному полі.
- •Вплив електронегативності газів на їхню електричну міцність.
- •Залежність електричної міцності газів від тиску і відстані між електродами. Закон Пашена.
- •Теорія теплового пробою діелектриків.
- •Вплив характеристик діелектрика і зовнішніх факторів на пробивну напругу при тепловому пробої.
- •Часткові розряди в діелектриках і характеристики їхньої інтенсивності.
- •Вологість, гігроскопічність, змочуваність, вологопроникність діелектричних матеріалів і їх вплив на експлуатаційні характеристики ізоляції.
- •Класи нагрівостійкості електричної ізоляції, температурний індекс і профіль нагрівостійкості ізоляційних матеріалів.
- •Вплив радіоактивного опромінювання на електричні, механічні та теплові властивості діелектриків.
- •Природні та синтетичні рідинні електроізоляційні матеріали, їхні властивості, особливості та основні області застосування.
- •Класифікація твердих діелектриків за різними критеріями, особливості та області застосування твердих діелектриків.
- •Електроізоляційне скло і матеріали на його основі.
- •Найважливіші типи керамічних електроізоляційних матеріалів та області їхнього застосування.
- •Класифікація і області застосування полімерних діелектриків і пластмас.
- •Основні полімерні діелектричні матеріали, їхні властивості і застосування.
- •Еластомери, їхні властивості і застосування.
- •Лаки, емалі і компаунди, їхні властивості і застосування.
- •Волокнисті електроізоляційні матеріали (органічні і неорганічні), їхні властивості і застосування.
- •Загальна характеристика активних діелектриків.
- •Основні властивості провідникових матеріалів.
- •Провідникові матеріали високої провідності: властивості і застосування.
- •Провідникові матеріали високого опору: властивості і застосування.
- •Термопарні матеріали: властивості і застосування.
- •Припої і провідникові матеріали для електричних контактів: властивості і застосування.
- •Надпровідникові і кріорезистивні матеріали: властивості і застосування.
- •Загальна характеристика і класифікація напівпровідників.
- •Вплив зовнішніх факторів на електропровідність напівпровідників.
- •Термоелектричні явища в напівпровідниках і їхні застосування.
- •Магнітоелектричні явища в напівпровідниках і їхні застосування.
- •Магнітні властивості речовини і загальна класифікація магнітних матеріалів.
- •Магнітом’які матеріали, їхні властивості і застосування.
- •Технічно чисте залізо(низьковуглицева сталь);
- •Магнітотверді матеріали, їхні властивості і застосування.
- •Литі висококоерцитивні сплави.
Надпровідникові і кріорезистивні матеріали: властивості і застосування.
До кріопровідників і надпровідників відносяться метали, що працюють при дуже низьких температурах, що наближаються до абсолютного нуля. Явище надпровідності було відкрите В. Камерлінг-Оннесом в 1911 році. Ним було виявлено, що при охолодженні до температури скраплення гелію (4,2 К) опір замороженої ртуті різким стрибком падає практично до нуля (10-25 Ом·м), що в 1017 разів менше опору міді. В наш час відомо 35 таких металів і більше тисячі сплавів і хімічних з’єднань, у яких при дуже низьких температурах питома провідність стає нескінченною величиною. Ряд елементів проявляє надпровідні властивості при низьких тисках, наприклад, такі напівпровідники, як кремній, германій, селенів, сурма і т.д. Разом з тим такі метали як мідь, срібло, платина, золото та інші перевести в надпровідний стан не вдалося. Наявність у речовини такої провідності називається надпровідністю, а температура при якій речовина переходить у надпровідний стан, називається температурою надпровідного переходу (ТС). Матеріали, що переходять у надпровідний стан, називаються надпровідниками. Цей перехід є оборотним процесом: при підвищенні температури до значення ТС надпровідність зникає і матеріал переходить у звичайний стан з кінцевим значенням питомої електропровідності γ.
Явище надпровідності відповідно до квантової теорії виникає в результаті притягання електронів один до одного. Таке притягання можливе тільки в середовищі, що містить позитивно заряджені іони, поле яких послабляє сили кулонівського відштовхування між електронами. Притяга-ються тільки ті електрони, які беруть участь у процесі електропровідності. У результаті такого притягання електронів з протилежними напрямками імпульсів і спінів утворюють так звані куперовські пари. Вирішальну роль в утворенні цих пар відіграє взаємодія електронів з тепловими коливаннями решітки – фононами. Обмінна фононна взаємодія й викликає сили притягання між електронами. Електрон, що рухається серед позитивно заряд-жених іонів, електростатичними силами притягає до себе найближчі іони. У результаті такого зсуву іонів в зоні траєкторії електрона локально зростає густина позитивного заряду. Другий електрон, що рухається услід за першим, може притягатися областю з надлишковим позитивним зарядом. За рахунок непрямої взаємодії з решітками між першим і другим електронами виникають сили притягання. Другий електрон стає партнером першого – утворюється куперовська пара. При абсолютному нулі всі електрони зв'язані в пари. При підвищенні температури за рахунок теплової енергії відбувається розрив деяких електронних пар. Перехід речовини в надпровідний стан при його охолодженні відбувається в дуже вузькому діапазоні температур (соті частки гра-дуса). Установлено, що порушення надпровідності відбувається не тільки при підвищенні температури, що перевищуюче значення Тс, але також при виникненні на поверхні надпровідника магнітного поля з магнітною індукцією, що перевищує значення індукції переходу Вс. Причому для чистих надпровідникових металів – надпровідників першого роду (свинець, ртуть, індій, олово, алюміній) немає значення, чи створюється ця індукція струмом, що протікає по надпровіднику або зовнішнім джерелом магнітного поля. У надпровідників першого роду цей перехід відбувається стрибкоподібно, як тільки напруженість поля досягне критичного значення (рис.4.10).
Надпровідники другого роду переходять з одного стану в інший посту-пово; для них розрізняють нижню Нсв1 і верхню Нсв2 критичні напруженості поля. В інтервалі між ними матеріал перебуває в проміжному гетерогенному стані, в якому співіснують нормальна й надпровідна фази. Співвідношення між їхніми обсягами залежить від напруженості поля. Надпровідниками другого роду в основному є інтерметалічні з'єднання й сплави. Із чистих металів до надпровідни-ків другого роду можна віднести лише ніобій, ванадій і технецій.
Рис.4.10. Діаграма стану надпровідника другого (криві 1 і 2) і першого (крива 3) роду.
Критична напруженість магнітного поля для надпровідників першого роду становить близько 105А/м, а для надпровідників другого роду значення верхньої критичної напруженості може перевищувати 107А/м.
Слід зазначити, що особливістю надпровідників є те, що магнітне поле не проникає в товщу зразка. Силові лінії поля обгинають надпровідник. Це явище зумовлено воно тим, що в поверхневому шарі надпровідника виникає круговий незатухаючий струм, що повністю компенсує зовнішнє поле в товщині зразка. У результаті цього надпровідники є ідеальними діамагне-тиками з магнітною проникністю, що дорівнює нулю. Експериментально це підтвердив В.К.Аркад’єв, продемонструвавши дослід, коли постійний магніт висів у повітрі над кільцем з надпровідного матеріалу, в якому циркулювали індуковані магнітом незатухаючі струми.
Однак розподіл речовин за їхніми надпровідними властивостями на два види не є абсолютним. Будь-який надпровідник першого роду можна перетворити в надпровідник другого роду, якщо створити в ньому достатню концентрацію дефектів кристалічних решіток. Над провідність ніколи не спостерігається в системах, в яких існує феро- і антиферомагнетизм. Утворенню надпровідного стану в напівпровідниках і діелектриках перешкод-жає мала концентрація вільних електронів. Але в матеріалах з великою діелектричною проникністю сили кулонівського відштовхування між електро-нами ослаблені, тому в деяких з них може спостерігатися явище над провід-ності.
У цей час надпровідники знаходять застосування для виготовлення магнітних систем, що втримують плазму в реакторах керованого термоядерного синтезу, в магнітогідродинамічних (МГД) перетворювачах теплової енергії в електричну, як індуктивні накопичувачі енергії для покриття пікових потужностей. Застосування над провідників в електричних машинах для створення обмоток збудження дає змогу виключити з машин осердя з електротехнічної сталі. Проводяться дослідження зі створення надпровідних ліній електропередачі на постійному й змінному струмах. Перспективним є створення надшвидкісного транспорту на магнітній подушці.
Параметри деяких надпровідників подано в табл. 4.3.
Надпровідник |
Температура переходу ТС, К |
Критичне значення індукції, ВС, Тл |
Алюміній Al |
1,2 |
0,01 |
Олово Sn |
3,7 |
0,031 |
Індій In |
3,4 |
0,03 |
Ртуть Hg |
4,2 |
0,46 |
Свинець Pb |
7,2 |
0,08 |
Поряд з надпровідністю в сучасній техніці використовується явище кріопровідності, тобто робота металу при кріогенних температурах, коли опір стає дуже малим, але є кінцевою величиною. Метали, що володіють такою властивістю, але без переходу в надпровідний стан, називаються кріопровід-никами. Для отримання якісних кріопровідників необхідна висока чистота металу. Як правило використовуються метали, що мають при кріогенних температурах, які є вищими температур надпровідності, найменше значення питомого опору. До них відносять: при температурі рідкого водню – алюміній (20,3 К), а при температурі рідкого азоту – берилій (77,4 К).
