Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
11-15_biokhimia.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
203.22 Кб
Скачать

Коферменты

Структура кофермента Ацетил-КоА. Ацетильная группа связана с атомом серы по левому краю.Подробное рассмотрение темы: Коферменты

Метаболизм включает широкий спектр химических реакций, большинство из которых относятся к нескольким основным типам реакций переноса функциональных групп.[14] Для переноса функциональных групп между ферментами, катализирующими химические реакции, используются коферменты.[13] Каждый класс химических реакций переноса функциональных групп катализируется отдельными ферментами и их кофакторами.[15]

Аденозинтрифосфат (АТФ) — один из центральных коферментов, универсальный источник энергии клеток. Этот нуклеотид используется для передачи химической энергии, запасенной в макроэргических связях, между различными химическими реакциями. В клетках существует небольшое количество АТФ, который постоянно регенерируется из ADP и AMP. Организм человека за сутки расходует массу АТФ, равную массе собственного тела.[15] АТР выступает в качестве связующего звена между катаболизмом и анаболизмом: при катаболических реакциях образуется АТФ, при анаболических — энергия потребляется. АТФ также выступает донором фосфатной группы в реакциях фосфорилирования.

Цикл Кребса: катаболическая роль

Цикл лимонной кислоты (ЦК) начинается с взаимодействия молекулы ацетил-CoA с четырехуглеродной дикарбоновой кислотой - щавелевоуксусной (оксалоацетатом) , в результате образуется шестиуглеродная трикарбоновая кислота, называемая лимонной(цитратом) . Далее следует серия реакций, в ходе которых происходит высвобождение двух молекул CO2, и регенерация оксалоацетат а ( Цикл Кребса: метаболическая карта ). Поскольку количество оксалоацетата, необходимое для превращения большого числа ацетильных единиц в CO2, весьма невелико, можно считать, что оксалоацетат выполняет каталитическую роль.

ЦК является механизмом, обеспечивающим улавливание большей части свободной энергии, освобождаемой в процессе окисления углеводов, липидов и белков. В процессе окисления ацетил-CoA благодаря, активности ряда специфических дегидрогеназ происходит образование восстановительных эквивалентов в форме водорода или электронов. Последние поступают в дыхательную цепь ; при функционировании этой цепи происходит окислительное фосфорилирование , т.е. синтезируется ATP

15)Определение аминокислот в гидролизатах белков. Сущность метода распределительной бумажной хроматографии. Преимущества и прикладное значение метода.

Определение аминокислотного состава белков может быть осуществлено различными методами: химическим, хроматографическим, микробиологическим и изотопным. Чаще используются хроматографические методы.

Бумажная хроматография. Бумажная хроматография используется для идентификации компонентов смеси аминокислот с ди- и три-пептидами, получаемой при частичном гидролизе белков и полипептидов.

Гидролиз может быть осуществлен кислотным, щелочным или ферментативным методом. Кислотный метод используется чаще (6 н. HCl, 8 н. H2SO4). Гидролиз проводят при нагревании, иногда при повышенном давлении. Показателями окончания гидролиза могут служить: прекращение нарастания карбоксильных или аминных групп в гидролизате, либо отрицательная биуретовая реакция. Избыток гидролизующего реагента удаляют: серную кислоту осаждают Ca(OH)2, соляную кислоту отгоняют в вакууме, а остаток кислоты осаждают нитратом серебра.

Компоненты гидролизата распределяются между водой, адсорбированной на целлюлозе и являющейся неподвижной фазой, и органическим растворителем, подвижной фазой, которая движется вдоль листа вверх или вниз. В качестве подвижной фазы используется смесь бутанол-уксусная кислота-вода (4:1:5). Более липофильные аминокислоты сильнее увлекаются органическим растворителем, более гидрофильные – проявляют большую тенденцию связываться с неподвижной фазой. Гомологические соединения, отличающиеся даже на одно метиленовое звено, движутся с различной скоростью и легко могут быть разделены. По окончании хроматографии бумагу высушивают и обрабатывают проявителем (0,5% раствор нингидрина в смеси ацетон-ледяная уксусная кислота-вода) и нагревают в течение нескольких минут. Аминокислоты проявляются в виде окрашенных пятен. Подвижность – постоянная величина, характерная для каждого соединения возрастает с увеличением молекулярной массы. Для аминокислот с неразветвленной цепью величина подвижности несколько больше, чем для соответствующих изомеров. Введение в молекулу полярных групп снижает подвижность соединения. Аминокислоты с объемными неполярными боковыми цепями (лейцин, изолейцин, фенилаланин, триптофан и др.) перемещаются быстрее, чем аминокислоты с более короткими неполярными боковыми цепями (пролин, аланин, глицин) или с полярными боковыми цепями (треонин, аргини, цистеин, гистидин, лизин). Это обусловлено большей растворимостью полярных молекул в гидрофильной стационарной фазе и неполярных – в органических растворителях.

Бумажная хроматография может быть использована для количественной оценки содержания аминокислот. Каждое пятно вырезают и элюируют подходящим растворителем; затем проводят количественный колориметрический (нингидриновый) анализ. В другом варианте бумагу опрыскивают нингидрином и измеряют с помощью фотометра интенсивность окрашивания пятна в отраженном или проходящем свете. При полуколичественной оценке содержание аминокислот оценивают по площади пятен на хроматограмме, которые пропорциональны концентрациям аминокислот в разделяемой смеси.