Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_po_MB.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.23 Mб
Скачать

Типы брожения. Характеристика типов брожения

Молочнокислое брожение

Молочнокислое брожение считается эволюционно одним из самых древних и примитивных типов брожения. По характеру самого процесса и образующимся конечным продуктам различают гомо- и гетероферментативное молочнокислое брожение.

В основе гомоферментативного молочнокислого брожения лежит гликолетический цикл сбраживания гексозы с образованием двух молекул пировиноградной кислоты. Последняя, выступает конечным акцептором водорода, восстанавливается до молочной кислоты. Этот процесс можно выразить следующим уравнением:

С6Н12О6 → 2СН3СНОНСООН+196,65 кДж/моль.

Энергетический выход гомоферментативного молочнокислого брожения невелик и составляет всего 2 молекулы АТФ на 1 молекулу сброженной глюкозы.

Процесс ведут гомоферментативные молочнокислые бактерии, способные сбраживать 85 – 98% сахара, находящегося в среде, до молочной кислоты. Морфологически они представлены кокками, относящимися к родам Streptococcus и Pediococcus, палочковидными формами обширного рода Lactobacillus. Все бактерии этой группы по методу Грамма окрашиваются положительно, спор не образуют, неподвижны. По отношению к кислороду аэротолерантны, т.е. способны расти при доступе кислорода. Молочнокислые бактерии характеризуются низкими биосинтетическими способностями. Источником углерода для них служат молочные или растительные сахара и редко некоторые пентозы, сахароспирты и органические кислоты. Низкие биосинтетические способности этой группы бактерий свидетельствуют о примитивности их конструктивного метаболизма.

В основе гетероферментативного молочнокислого брожения лежит пентозофосфатный путь сбраживания гексоз или пентоз с образованием молочнокислой кислоты и ряда других продуктов – уксусной кислоты, этиленового спирта, глицерина и углекислого газа:

С6Н12О6→СН3СНОНСООН+СН3СООН+СН3СН2ОН+СН2ОНСНОНСН2ОН+СО2

Облигатные гетеротрофные молочнокислые бактерии лишены ключевых ферментов гликолетического пути – альдолазы и триозофосфатизомеразы. К этой группе относятся бактерии родов Lactobacillus, Leuconostoc и Bifidobacterium. Некоторые молочнокислые бактерии способны вести как гомо, так и гетероферментативное молочнокислое брожение, сбраживая гексозы по гликолитическому, а пентозы по пентозному пути.

Молочнокислые бактерии весьма широко распространены в природе. Они легко выделяются из молока и всех молочных продуктов, с поверхности растений и разрушающихся растительных масс, из почвы и ризосферы растений, из желудка и кишечника животных и человека.

С незапамятных времен молочнокислые бактерии находят применение в различных отраслях хозяйственной деятельности человека – для приготовления кисломолочных продуктов, сливочного масла, сыра, квашения овощей и т.д.

Для производства кисломолочных продуктов в разных географических широтах используют различные виды молочнокислых бактерий. Так, на севере в закваску для простокваши входят в основном кокковые формы Streptococcus lactis и S. cremoris; на юге в закваске простокваши преобладает болгарская палочка (Lactobacillus bulgaricus).

Закваски некоторых национальных кисломолочных продуктов (кефира, кумыса, йогурта) представлены исторически сложившимися симбиотическими комплексами молочнокислых бактерий и дрожжей. Молочнокислые бактерии сбраживают лактозу молока с образованием 0,8–1% молочной кислоты, дрожжи ведут спиртовое брожение и сбраживают лактозу с образованием 1%-ного этилового спирта.

Молочнокислые бактерии играют важную роль в приготовлении сыров. В основе сыроварения лежит коагуляция казеинамолока под действием сычужного фермента, получаемого из желудка жвачных жживотных. Образовавшиеся сгустки казеина отделяют от молочной сыворотки, пресуют, выдерживают в растворе соли и оставляют на созревание. Во время созревания в сырной массе идут сложные процессы превращения казеина в аминокислоты под влиянием ферментов.

В процессах квашения овощей и силосования кормов принимают участие многочисленные спонтанные расы гомо- и гетероферментативных молочнокислых бактерий.

Гетероферментативные молочнокислые бактерии рода Bifidobacterium являются обитателями кишечника животных и человека, нередко они составляют от 50 до 90% микробного населения в фекалиях человека.

Многие молочнокислые бактерии способны синтезировать вещества, обладающие антибиотическими свойствами (лактолин, низин, бревин, диплококкцин и др.). На этом свойстве молочнокислых бактерий основано их антагонистическое действие на гнилостные и болезнетворные микроорганизмы в кишечнике человека и животных.

Спиртовое брожение. Процесс спиртового брожения проходит по гликолитическому пути до образования пировиноградной кислоты. Далее при участии ключевого фермента спиртового брожения – пируватдекарбоксилазы – происходит декарбрксилирование пировиноградной кислоты. В результате образуются ацетальдегид и углекислый газ.

Образовавшийся ацетальдегид выступает конечным акцептором и под действием НАД+-зависимой алькогольдегидрогеназы восстанавливается до этиленового спирта. Донором водорода, как и при молочнокислом брожении, служит 3-фосфоглицериновый альдегид.

Суммарно процесс спиртового брожения можно выразить следующим уравнением:

С6Н12О6 + 2Фн + 2АДФ→ 2СН3СН2ОН + 2СО2 + 2АТФ +2Н2О

Энергетический выход процесса составляют 2 молекулы АТФ на 1 молекулу сброженной глюкозы. Отличие спиртового брожения от молочнокислого заключается в различной природе конечного акцептора водорода.

При смещении рН в щелочную сторону (рН = 8) увеличивается выход глицерина.

Спиртовое брожение лежит в основе ряда промышленных производств – виноделия, получения спирта, пивоварения, хлебопечения. На Европейском континенте в промышленности используют различные расы сахаромицетных дрожжей (Saccharomyces cerevisiae, Sacch. vini), на Американском континенте – различные расы схизосахаромицетов.

Среди прокариот к активному спиртовому брожению способны Erwinia amylovora, Zymomonas mobilis, Sarcina vintriculi. Последняя используется в промышленном производстве для получения этилового спирта в странах Востока.

Маслянокислое брожение. Маслянокислое брожение проходит в строго анаэробных условиях и ведут его облигатно-аэробные бактерии рода Clostridium.

Этот тип брожения следует рассматривать как один из вариантов усложненного брожения, в основе которого лежит гликолитический путь сбраживания углеводов до пировиноградной кислоты. Характерной особенностью маслянокислого брожения является реакция конденсации с образованием С4- – соединения (масляной кислоты). В результате из пировиноградной кислоты образуются уксусный альдегид, муравьиная и уксусная кислота, нередко этиловый спирт. Муравьиная кислота распадается до СО2 и Н2, а реакция конденсации ацетальдегида приводит к образованию масляной кислоты. Суммарно процесс маслянокислого брожения можно выразить следующим уравнением:

6Н12О6 →3СН3СН2СН2СООН + 2СН3СООН + 8СО2 + 8Н2

Энергетический выход данного процесса составляет 3,3 молекулы АТФ на 1 молекулу сброженной глюкозы. Процесс маслянокислого брожения очень лабилен и зависит от состава питательной среды и стадии развития культуры микроорганизма.

Маслянокислые бактерии рода Clostridium многочисленны и гетерогенны. Морфологически они представлены крупными палочками. В молодой культуре палочки подвижны, тип жгутикования перитрихиальный. По мере старения клетки формируют эндоспоры. Спорангии переходного типа – от клостридиального к плекридиальному, форма спор сферическая или овальная.

По типу использования углесодержащих веществ маслянокислые бактерии подразделяются на сахаролитические и протеолитические. Сахаролитические виды (Cl. butyricum, Cl. pasteurianus, и др.) сбраживают различные соединения углеводной природы: пектин, целлюлозу, крахмал, хитин и т.д. Протеологические клостридии (Cl. рutrificum, Cl. sporogenes, Cl. histolyticum) в качестве сбраживаемого субстрата используют белки, аминокислоты, пурины, пиримидины.

Различные виды маслянокислых бактерий в природе ведут самые разнообразные процессы: аэробную аммонификацию органических азотсодержащих веществ, анаэробное разложение растительных остатков – пектина и клетчатки.

Маслянокислые бактерии нередко причиняют вред, вызывая порчу продуктов – прогоркание масла, сметаны, и т.д.

Одной из разновидностей маслянокислого брожения является ацетоно-бутиловое брожение. Основные продукты – бутиловый, этиловый и изопропиловый спирт, ацетон и газ СО2 и Н2. Суммарно этот процесс брожения может быть выражен следующим уравнением:

С6Н12О6→СН3СН2СН2СН2ОН + СН3СН2ОН + СН3СОСН3 + СН3СНОНСН3 + Н2 + СО2

Выход продукта брожения обуславливается составом питательного субстрата, условиями рН среды, температурой, а также видом маслянокислых бактерий, ведущих брожение. Этот вид маслянокислого брожения широко используется в современном производстве для получения дифицитных реактивов – ацетона и бутилового спирта из любого крахмалсодержащего сырья.

Рассмотрев суть процессов брожения на конкретных примерах, подчеркнем еще раз, что этот тип анаэробного окисления является наиболее примитивным способом получения энергии. Среди царства прокариот анаэробное окисление присуще многочисленной и разнообразной группе микроорганизмов. Однако только небольшая часть их может быть названа первичными анаэробами. Большая часть ныне существующих анаэробов имеет вторичное происхождение, связанное с адаптацией их к анаэробным условиям среды и утратой способности к анаэробному окислению с использованием молекулярного кислорода. Примером таких микроорганизмов может служить микрофлора кишечника. В целом анаэробные прокариоты и в современную эпоху занимают широкие экологические ниши – глубинные слои почвы и воды, придонные илы морей и океанов, нефтяные скважины и т.д.

Аэробное окисление органического и неорганического субстрата .

Уксуснокислое брожение. Среди прокариот-аэробов имеются микроорганизмы, способные получать энергию за счет неполного аэробного окисления некоторых органических веществ.

Уксуснокислые бактерии представлены палочками небольших размеров, в молодой культуре они подвижны. Все виды – облигатные аэробы, довольно требовательные к субстратам, особенно к витаминам и в первую очередь к пантотеновой кислоте. Наиболее характерна способность бактерий этой группы окислять этиловый спирт с образованием уксусной кислоты при участии НАД-зависимых дегидрогеназ.

Уксуснокислое брожение – это окисление бактериями этилового спирта в уксусную кислоту:

СН3СН2ОН + О2 = СН3СООН + Н2О.

Такое брожение было известно еще в глубокой древности. В оставленном на воздухе сосуде с виноградным вином или пивом через день-два на поверхности напитков появлялась сероватая пленка, они мутнели и прокисали.

Возбудителем уксуснокислого брожения является уксусный гриб (Mycoderma aceti) и уксуснокислые бактерии.

Уксуснокислые бактерии представляют собой грамотрицательные, палочковидные, бесспоровые, строго аэробные организмы. Среди них есть подвижные и неподвижные бактерии. Они кислотоустойчивы, и некоторые могут развиваться при рН среды до 3,2.

Уксуснокислые бактерии имеют родовое название Acetobacter.

В настоящее время описано около 20 видов этих бактерий, важнейшими из них являются: A. aceti, A. pasteurianum, А. огleanense, A. xylinum, A. schutzenbachii. Эти бактерии различаются размерами клеток, устойчивостью к спирту, способностью накапливать в среде большее или меньшее количество уксусной кислоты и другими признаками. Например, A aceti накапливает в среде до 6% уксусной кислоты, A. orleanense – до 9,5%, A. schutzenbachii – до 11,5%, a A. xylinum – до 4,5%. A. aceti и A. schutzenbachii выдерживают довольно высокую концентрацию спирта – до 9-11%, a A. xylinum – лишь 5-7%.

Оптимальная температура роста для различных уксуснокислых бактерий 20-35° С. Некоторые из них способны синтезировать витамины В1, В2, B12, однако многие сами нуждаются в витаминах и прежде всего в пантотеновой кислоте. Уксуснокислые бактерии часто встречаются в виде длинных нитей и многие образуют пленки на поверхности субстрата. Например, для A. pasteurianum характерна пленка сухая морщинистая, для A. xylinum – мощная, хрящевидная. Некоторые бактерии сплошной пленки не образуют, а дают только островки ее на поверхности жидкости или «кольцо» около стенок сосуда. Появление пленок связано с ослизнением клеточных оболочек.

Уксуснокислым бактериям свойственна изменчивость формы клеток. В неблагоприятных условиях развития бактерии приобретают необычную форму – толстые длинные нити, иногда раздутые, уродливые клетки.

Уксуснокислые бактерии широко распространены в природе, они встречаются на зрелых плодах, ягодах, в квашеных овощах, вине, пиве, квасе.

Практическое использование уксуснокислого брожения.

На уксуснокислом брожении основано промышленное получение уксуса для пищевых целей. До настоящего времени еще сохранился старинный «медленный» способ производства уксуса из вина. Подкисленное уксусом и разбавленное водой вино наливают в открытые чаны (бочки) и вносят кусочки пленки уксуснокислых бактерий A. orleanense. Бактерии развиваются на поверхности вина, окисляют спирт, и вино превращается в уксус. Процесс идет очень медленно. Готовый уксус частично сливают из-под пленки и добавляют новую порцию вина. Так одну и ту же пленку используют длительное время.

В промышленности для производства уксуса обычно применяют быстрый способ.

Окисление других спиртов и сахара уксуснокислыми бактериями. Уксуснокислые бактерии могут окислять не только этиловый, но и другие одноатомные спирты, например пропиловый в пропионовую кислоту, бутиловый – в масляную. Метиловый спирт и высшие одноатомные спирты эти бактерии не окисляют.

Некоторые уксуснокислые бактерии окисляют до соответствующих кислот сахара альдозы, например глюкозу в глюко-новую кислоту:

2СН2ОН(СНОН)4СНО + О2 -> 2СН2ОН(СНОН)4СООН.

Превращение глюкозы в глюконовую кислоту известно как глюконовокислое брожение. Глюконовая кислота применяется в медицине и ветеринарии.

В качестве возбудителей этого брожения используют уксуснокислые бактерии, устойчивые к повышенному содержанию глюкозы и глюконовой кислоты. Кроме уксуснокислых бактерий, глюконовую кислоту в глюкозосодержащих субстратах образуют некоторые флуоресцирующие бактерии (например, Ps. fluorescens) и некоторые плесневые грибы из родов Aspergillus и Реnicillium, которые также используются в промышленности.

Лимоннокислое брожение. Плесени в процессе дыхания также окисляют углеводы нередко не до СО2 и Н2О, поэтому в среде накапливаются продукты неполного окисления – различные органические кислоты (щавелевая, янтарная, яблочная, лимонная и др.). Образование грибами лимонной кислоты применяют в промышленности.

Лимоннокислым брожением называется окисление глюкозы грибами в лимонную кислоту. Конечный результат брожения можно представить следующим суммарным уравнением:

6Н1206 + 302 -> 2С6Н807 + 4Н20.

Химизм образования лимонной кислоты из сахара до настоящего времени окончательно не установлен. Большинство исследователей считает, что это брожение до образования пировиноградной кислоты протекает, как и другие брожения. Далее превращение пировиноградной кислоты в лимонную через ряд кислот (уксусную, янтарную, фумаровую, яблочную, щевелево-уксусную) сходно с превращениями в цикле Кребса.

Раньше лимонная кислота добывалась из цитрусовых плодов – лимонов и апельсинов. Этот способ очень невыгоден, так как плоды содержат только 7-9% лимонной кислоты.

В настоящее время ее получают главным образом путем брожения 1. Технические приемы биохимического получения лимонной кислоты в СССР были разработаны В. С. Буткевичем и С. П. Костычевым.

Возбудителем брожения является гриб Aspergillus niger.

Основным сырьем служит меласса – черная патока. Раствор ее, содержащий около 15% сахара, в который добавляют необходимые для гриба питательные вещества (в виде различных минеральных солей), наливают невысоким (8—12см) слоем в плоские открытые сосуды (кюветы) и засевают спорами гриба. Кюветы помещают в бродильные камеры, которые хорошо аэрируются. Процесс продолжается 6—8 дней при температуре около 30° С. Гриб развивается на поверхности сбраживаемой жидкости. Выход лимонной кислоты достигает 60—70% израсходованного сахара. По окончании брожения раствор из-под пленки гриба сливают. Лимонную кислоту выделяют из раствора и подвергают очистке и кристаллизации. При отсутствии в растворе сахара эта кислота может быть окислена грибом до более простых продуктов – щавелевой и уксусной кислот, углекислого газа и воды.

Описанный «поверхностный метод» (гриб развивается на поверхности сбраживаемого субстрата) получения лимонной кислоты заменяется в настоящее время «глубинным методом», при котором мицелий гриба растет в закрытых чанах (ферментаторах) в толще высокого слоя сбраживаемой жидкости, непрерывно перемешиваемой и аэрируемой стерильным воздухом. Этот способ повышает производительность труда, позволяет избежать заражения сбраживаемого субстрата посторонними микроорганизмами, его легче автоматизировать и механизировать.

Лимонную кислоту для технических целей получают путем переработки отходов табака и махорки.

Лимонная кислота используется в кондитерской промышленности, производстве безалкогольных напитков, сиропов, кулинарии и медицине.

Анаэробное окисление: нитратное и сульфатное дыхание

Анаэробное окисление встречается только среди представителей царства прокариот. Оно присуще микроорганизмам, способным переходить от аэробного образа жизни к анаэробному, используя в качестве конечного акцептора электронов как молекулярный кислород, так и азот нитратов и серу сульфатов.

Типичным примером таких микроорганизмов являются денитрифицирующие бактерии.

Дыхательная цепь денитрифицирующих бактерий включает все основные ферменты-переносчики электронов, характерные для дыхательной цепи аэробов. Только конечное звено цитохромной системы – цитохромоксидаза замещена у них на нитратредуктазу, катализирующую перенос электронов на азот нитратов. Нитратредуктазы относятся к индуцибельным ферментам, синтезируемым клеткой только в анаэробных условиях при наличии нитратов в среде.

Процесс денитрификации состоит из 4 восстановительных стадий, каждая из которых катализируется соответствующей нитратредуктазой. На первой стадии происходит восстановление нитратов в нитриты:

азот+5 принимая 2 протона и 2 электрона восстанавливается в азот нитритов NО2- +3:

3- + 2e- + 2Н+ →NО2- + Н2О.

Далее нитраты восстанавливаются до оксида азота (II), затем до оксида азота (I) и в конечном итоге до молекулярного азота:

2- + e- + Н+→ NО + ОН-

2NО + 2e- + 2Н+→ N2О + Н2О

N2О + 2e- + 2Н+ →N2 + Н2О

Использование азота в качестве акцептора электронов позволяет денитрифицирующим бактериям полностью окислять органические вещества субстрата до конечных продуктов СО2 и Н2О. Поэтому энергетический выход нитратного дыхания практически приближается к обычному аэробному окислению.

Поскольку денитрофицирующие бактерии переключаются на нитратное дыхание, только попадая в анаэробные условия, приспособление их к анаэробному образу жизни следует считать эволюционно вторичным и рассматривать как возврат к анаэробиозу от типичного аэробного окисления.

К анаэробному окислению способны и сульфатвосстанавливающие бактерии, относящиеся к родам Desulfotomaculum, Desulfonema, Desulfovibrio и др. Пути получения энергии у сульфатвосстанавливающих бактерий могут быть разными. Это процесс брожения органических веществ, сопровождающиеся образованием АТФ в результате субстратного фосфорилирования, сульфатное дыхание, предусматривающее окисление органических веществ в анаэробных условиях с переносом электронов на серу сульфатов. Бактерии этой гетерогенной группы способны получать энергию также за счет окисления молекулярного водорода, сопряженного с востановлением сульфатов.

Способность сульфатвосстанавливающих бактерий использовать молекулярный водород для получения энергии позволяет отнести их к анаэробным хемолитотрофным микроорганизмам.

В процессе окисления молекулярного водорода получают энергию и метанообразующие бактерии, использующие в качестве акцептора электронов углекислый газ. Для бактерий этой группы СО2 выступает одновременно источником углерода и акцептором электронов:

2 + СО2 →СН4 + 2Н2О.

Изучение различных типов катаболизма прокариот дает возможность предположить, что именно совершенствование способов получения энергии клеткой лежит в основе эволюции представителей этого царства.

Наиболее древней группой прокариот являются анаэробные бактерии, добывающие энергию в процессах брожения за счет субстратного фосфорилирования.

Существенным этапом на пути эволюции прокариот следует считать появление фототрофных бактерий, использующих в качестве основного источника энергии солнечный свет и в качестве основного источника углерода СО2.

Развитие фотосинтетиков-аэробов, в первую очередь цианобактерий, привело к обогащению среды молекулярным кислородом. В клетке аэробных бактерий сложилась еще одна система электроного транспорта и сопряженный с ней механизм фосфорилирования – окислительное фосфорилирование.

В настоящее время в царстве прокариот мы встречаемся с поразительным разнообразием типов катаболизма. Однако доминирующим и эволюционно господствующим типом катаболизма, несомненно, являтся аэробное окисление со всем его многообразием доноров и акцепторов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]