- •2.Объясните различия между линейным и нелинейным уравнениями колебаний математического маятника.
- •3.Опишите классический пример автоколебательной системы – генератор Ван-дер-Поля
- •4.Дайте понятие фазового портрета динамической системы.
- •5.Виды динамических систем
- •6.Рассмотрите основные характеристики динамического хаоса
- •7.Дайте определение бифуркационной диаграмме. На качественном уровне рассмотрите бифуркационную диаграмму логистического отображения.
- •8 .Приведите основные этапы построения карты динамических режимов автоколебательной системы.
- •9 .Рассмотрите на качественном уровне фазовый портрет системы Лоренца
- •10. Опишите динамику системы Лоренца.
- •11) Проанализируйте двумерные отображения, сохраняющие площадь. Приведите примеры.
- •12) Проанализируйте одномерные отображения систем. Приведите примеры.
- •13) Рассмотрите автономную систему - генератор Дмитриева-Кислова
- •14) Опишите диссипативный осциллятор с инерционной нелинейностью. Нарисуйте схему осциллятора.
- •15) Рассмотрите обобщенное отображение пекаря. Проиллюстрируйте возникновение странного хаотического аттрактора
- •16 Рассмотрите задачу об одномодовом лазере.
- •17 Характеристики динамического хаоса. Сечение Пуанкаре
- •18 Характеристики динамического хаоса. Показатели Ляпунова
- •19 Мультифрактальный формализм
- •20 Опишите одномерное отображение "зуб пилы". Покажите процесс возникновения хаоса в данной динамической системе
- •21.Опишите Логистическое отображение. Покажите процесс возникновения хаоса в данной динамической системе.
- •22.Опишите одномерное отображение "тент". Покажите процесс возникновения хаоса в данной динамической системе.
- •23.Опишите двумерное отображение "Кот Арнольда". Вычислите якобиан системы
- •24.Опишите 3-х мерную дианмическую систему: генератор Анищенко-Астахова. Нарисуйте схему генератора, покажите точки снятия значений переменных
- •25.Опишите генератор Кияшко-Пиковского-Рабиновича.
- •26.Рассмотрите динамическую систему Ресслера.
- •27. Опишите отображение "пекаря". Покажите процесс возникновения хаотических режимов.
- •28. Оцените динамику отображения Эно. Покажите процесс возникновения хаотических режимов
- •29. Оцените динамику отображения Икеды.
- •30.Определите неподвижные точки системы уравнений Лоренца.
- •31.Сравните отображения Заславского и кольцевого резонатора с нелинейным элементом.
- •32.Опишите 3-х мерные динамические системы: генератор с инерционной нелинейностью и генератор Кияшко-Пиковского-Рабиновича.
- •33.Отображение Заславского.
- •34.Бифуркации в модели Лоренца.
- •35.Хаос в реалистичных моделях динамических систем.
- •36.Рассмотрите модели с дисретным временем.
- •37.Рассмотрите модель возбуждаемого лазером кольцевого резонатора с нелинейной средой. Кольцевой резонатор с нелинейным элементом.
- •38.Напишите файл-функцию для системы Лоренца:
- •39.Напишите программу вывода колебаний нелинейного математического маятника
- •40.Напишите программу вывода на экран колебаний осциллятора Ван дер Поля
- •41.Найти (написать программу) фазовую траекторию отображения Икеды:
- •42.Покажите хаотические режимы (написать программу вывода колебаний) генератора хаоса:
- •43.Для следующей системы найти решение (написать программу).
- •44.Постройте странный хаотический аттрактор Лоренца.
- •45.Приведите программу вывода на экран решений в виде колебаний инерционного нелинейного генератора.
5.Виды динамических систем
1. Физически возможная система. Система преобразующая лишь предшествующие и текущие, но не будущие значения входных сигналов.
2. Физически не возможная система.
3. Детерминированная систем. система характеризующаяся однозначным соответствием реализаций входного и выходного сигналов, при этом условная плотность распределения вероятностей выходного сигнала при фиксированной входной реализации x(t) сосредоточенной на реализации y(t).
4. Вероятностная система (Недетерминированная система, стохастическая)
5. Одномерная система. Система, входной и выходной сигналы которого являются скалярными процессами.
6. Многомерная система. Система, входной и (или) выходной сигналы которого являются векторными процессами.
7. Линейная система. Система, подчиняющаяся принципу суперпозиции.
8. Нелинейная система.
9. Инерционная система. Система, значение выходного сигнала которой в некоторый момент времени зависит от значения входного сигнала в тот же момент времени t и от его значений в предшествие моменты времени.
10. Безынерционная (неинерционная) система. Система, в которой значение выходного сигнала в любой момент времени зависит только от значения входного сигнала в этот же момент.
11. Стационарная система. Система, в которой сдвиг входного сигнала во времени приводит к такому же сдвигу выходного сигнала.
12. Нестационарная система.
13. Система с сосредоточенными параметрами (непрерывная, дифференциальная система). Система, оператор которой может быть представлен в виде одного или системы обыкновенных дифференциальных уравнений.
14. Система с распределенными параметрами. Система, оператор которой может быть представлен в виде одного или системы дифференциальных уравнений в частных производных.
6.Рассмотрите основные характеристики динамического хаоса
В бытовом контексте слово «хаос» означает «быть в состоянии беспорядка». В теории хаоса прилагательное хаотическийопределено более точно. Хотя общепринятого универсального математического определения хаоса нет, обычно используемое определение говорит, что динамическая система, которая классифицируется как хаотическая, должна иметь следующие свойства:
Она должна быть чувствительна к начальным условиям.
Она должна иметь свойство топологического смешивания.
Её периодические орбиты должны быть всюду плотными.
Более точные математические условия возникновения хаоса выглядят так:
Система должна иметь нелинейные характеристики, быть глобально устойчивой, но иметь хотя бы одну неустойчивую точку равновесия колебательного типа, при этом размерность системы должна быть не менее 1,5.
Линейные системы никогда не бывают хаотическими. Для того, чтобы динамическая система была хаотической, она должна быть нелинейной
Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории. Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении.
Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание» как пример хаотической системы соответствует смешиванию разноцветных красок или жидкостей.
Причиной появления хаоса является неустойчивость (чувствительность) по отношению к начальным условиям и параметрам: малое изменение начального условия со временем приводит к сколь угодно большим изменениям динамики системы.
Так как начальное состояние физической системы не может быть задано абсолютно точно, то всегда необходимо рассматривать некоторую область начальных условий. При движении в ограниченной области пространства экспоненциальнаярасходимость с течением времени близких орбит приводит к перемешиванию начальных точек по всей области.
После такого перемешивания уже практически не имеет смысла говорить о координате конкретной частицы, более целесообразным является переход к статистическому описанию процесса, то есть к определению вероятности нахождения частицы в некоторой точке.
