
- •Функциональный анализ
- •Линейные пространства, размерность пространства. Бесконечно мерные пространства.
- •Нормированное пространство, пространство Банаха
- •Линейные топологические пространства
- •Линейные операторы
- •Метрические пространства
- •Линейные функционально-обобщенные функции
- •Предгильбертовые пространства, гильбертовые пространства. Ряды Фурье
- •Тема 1. Топологические пространства
- •Тема 2. Частично-упорядоченное множество.Лемма Царно.
Функциональный анализ
Функциональный анализ — раздел анализа, в котором изучаются бесконечномерные топологические векторные пространства (в основном пространства функций) и их отображения.
В различных источниках в качестве разделов функционального анализа рассматриваются теория меры и интеграла, теория функций,теория операторов, дифференциальное исчисление на бесконечномерных пространствах. Во второй половине XX века функциональный анализ пополнился целым рядом более специальных разделов, построенных на базе классических.
Функциональный анализ находит применение во многих точных науках; многие важнейшие теоретические конструкции описаны языком функционального анализа. В частности, в начале XXI века функциональный анализ широко применяется в теории дифференциальных уравнений, математической физике, теоретической физике (в том числе, квантовой механике, теории струн), теории управления иоптимизации, теории вероятностей, математической статистике, теории случайных процессов и других областях. Теорияпреобразования Фурье, используемая во многих областях науки и техники (например, в теории обработки изображений), также может рассматриваться как часть функционального анализа.
История
Развитие функционального анализа связано с изучением преобразования Фурье, дифференциальных и интегральных уравнений. Большой вклад в развитие и становление функционального анализа внёс польский математик Стефан Банах.
Изучение представления функций с помощью преобразования Фурье было привлекательно, к примеру, потому, что для определённых классов функций можно континуальный набор точек (значения функции) охарактеризовать счётным набором значений (набором коэффициентов).
Методы функционального анализа быстро приобрели популярность в различных областях математики и физики в качестве мощного инструмента. Значительную роль при этом сыграла теория линейных операторов:
Функциональный анализ за последние два десятилетия настолько разросся, настолько широко и глубоко проник почти во все области математики, что сейчас даже трудно определить самый предмет этой дисциплины. Однако в функциональном анализе есть несколько больших «традиционных» направлений, которые и поныне в значительной степени определяют его лицо. К их числу принадлежит и теория линейных операторов, которую иногда называют становым хребтом функционального анализа.
Именно через теорию операторов функциональный анализ столкнулся с квантовой механикой, дифференциальными уравнениями, теорией вероятности, а также рядом прикладных дисциплин.
Костюченко А. Г., предисловие редактора перевода к книге 1962 года
В конце 90-x годов XX в. в копилку функционального анализа добавилась тема, посвящённая вейвлет-преобразованиям. Эта тема пришла из практики как попытка построений новых базисов функциональных пространств, обладающих дополнительными свойствами, к примеру, хорошей скоростью сходимости приближений. Вклад в развитие внесла И. Добеши.
Числовые функции на пространствах функций называют функционалами. Возможно, с этим обстоятельством связано возникновение термина «функциональный анализ». Так, в классической механике для нахождения траектории движения частицы требуется исследовать на минимум функционал действия, для чего его приходится дифференцировать; а поскольку под термином «анализ» в математике понимается интегральное и дифференциальное исчисление, то естественно предположить, что нахождение экстремали функционала действия — одна из первейших задач, давших функциональному анализу его имя.
Функциональный анализ в его современном состоянии включает следующие ветви:
– Мягкий анализ. Аппроксимация для анализа, основанного на топологических группах, топологических кольцах и топологических векторных пространствах.
– Геометрия Банаховых пространств.
– Некоммутативная геометрия. Разработана Аленом Конном, частично построена на аппроксимации Джорджа Маки (George Mackey) в эргодической теории.
– Теория изображений. Связана с квантовой механикой.
– Квантовый функциональный анализ. Исследование пространств операторов вместо пространств функций.
– Нелинейный функциональный анализ. Исследование нелинейных задач, бифуркаций, устойчивости гладких отображений, деформаций особенностей и др. в рамках функционального анализа.