Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Звезды.docx
Скачиваний:
6
Добавлен:
12.04.2020
Размер:
130.58 Кб
Скачать

4. Ядерные реакции и эволюция звёзд

В плоских подсистемах галактик процесс звездообразования продолжается непрерывно, он происходит и в настоящее время. На это указывает, напр., существование З.-гигантов и сверхгигантов высокой светимости, у к-рых сроки истощения внутренних источников энергии с космологич. точки зрения очень малы (порядка 4-6 млн. лет).

К молодым З. относятся также З. типа Т Тельца, которые находятся ещё в стадии первоначального гравитац. сжатия. Темп-ра в центре таких З. недостаточна для протекания ядерных реакций, и свечение происходит только за счёт превращения гравитационной энергии в теплоту. З., рождающиеся в плоских подсистемах галактик, богатых межзвёздным газом и пылью, относятся ко второму поколению. Материалом для их образования послужили продукты взрывов З. первого поколения, к-рые входили в сферич. подсистемы галактик и образовались при формировании галактик. Т. о., разделение З. на населения плоской и сферич. подсистем галактик имеет глубокий эволюционный смысл.

Гравитац. сжатие - первый этап эволюции З.- приводит к разогреву центральной зоны З. до темп-ры "включения" термоядерной реакции превращения водорода в гелий (~10-15 млн. К). Превращение сопровождается большим выделением энергии. В недрах З. главной последовательности возможны два типа термоядерных реакции водорода, т. н. водородный цикл (протон - протонная цепочка) и углеродный цикл. В первом случае для протекания реакции требуется только водород, во втором необходимо ещё и наличие углерода, служащего катализатором. Вклад водородного и углеродного циклов в энергетику З. зависит как от темп-ры, так и от содержания углерода в её центральной зоне.

Сопоставление теоретич. моделей с наблюдаемыми параметрами З. позволяет сделать вывод, что у З. главной последовательности источниками энергии явл. водородные термоядерные реакции в центральной зоне. Водород - главная составная часть космич. вещества и важнейший вид ядерного горючего в З. Запасы его в З. очень велики, так что З.-карлики остаются на главной последовательности очень долгие сроки, измеряемые миллиардами лет. При этом, пока в центральной зоне весь водород не выгорел, св-ва З. и положение её на главной последовательности меняются мало.

После выгорания водорода в центральной зоне у З. образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но лишь в тонком слое близ поверхности этого ядра. Структура З. на этой стадии описывается моделями со слоевым источником энергии. Выгоревшее ядро начинает сжиматься, а внеш. оболочка - расширяться. Для З. с массой  это происходит, когда масса гелиевого ядра достигает 0,4 . На границе между ядром и оболочкой возникает скачок плотности, т. е. З. принимает гетерогенную структуру. Оболочка разбухает до колоссальных размеров. Из-за громадной внеш. поверхности З. её эффективная темп-ра становится низкой, и З. переходит в стадию красного гиганта (рис. 4). 

Рис.4. Эволюционный путь звезды с массой

Сжатие гелиевого ядра З. приводит к повышению его температуры. Для гетерогенных З. характерна низкая внеш., но очень высокая внутр. температура.

С повышением внутр. темп-ры в термоядерные реакции включаются всё более тяжёлые ядра. Эти реакции имеют значение не только как источники энергии З., но и как пути синтеза хим. элементов. После водородных реакций следующей стадией явл. гелиевые реакции, они начинаются при темп-рах свыше 150 млн. К. Два ядра гелия могут образовать только неустойчивое ядро бериллия 8Be, к-рое очень быстро распадается (примерно за 10-15 с). За столь малое время существования ядро 8Be всё же может захватить ещё одно ядро гелия и образовать в результате устойчивое ядро 12С. Этот процесс осуществим лишь благодаря тому, что ядро 12С имеет возбуждённый уровень с энергией »7,6 МэВ, близкой к энергии исходной системы ядер 8Be и 4Не. На следующем этапе в результате слияния ядер 12С и 4Не образуется ядро 16О. В свою очередь кислород, присоединяя 4Не, образует ядро 20Ne и т. д. Следует отметить, что синтез очередного более тяжёлого ядра с участием ядер гелия (a-частиц) требует всё более и более высоких энергий, поскольку с увеличением порядкового номера элемента возрастает энергетич. барьер, к-рый должна преодолеть a-частица. Это снижает вероятность образования тяжёлых ядер. Кроме того, концентрация ядер, образовавшихся в результате реакций с участием a-частиц, зависит от концентрации ядер-предшественников. Поэтому распространённость ядер "гелиевого ряда" уменьшается с ростом массового числа.

Теоретич. исследование эволюции З. на стадиях образования атомных ядер, более тяжёлых, чем 20Ne, 24Mg, представляет очень сложную проблему не только в силу сложности и многообразия ядерных реакций, но и из-за последовательного усложнения структуры З.

Ход эволюции на этих стадиях известен не столько из теоретич. расчётов, сколько из анализа экспериментально полученных диаграмм цвет - светимость шаровых скоплений, З. к-рых далеко проэволюционировали. Однако для массивных З. расчёты возможных путей эволюции были выполнены вплоть до стадий, непосредственно предшествующих взрыву сверхновых звёзд. К этому моменту полностью истощаются внутр. термоядерные источники энергии, и дальнейшая судьба З. зависит от её массы. При массе <1,4  З. переходит в стационарное состояние с очень большой плотностью (отметим, что речь идёт о конечной массе З., связь её с начальной массой не вполне определена из-за потерь вещества на предшествующих стадиях эволюции). Такие З. наз. белыми карликами. В них электроны образуют вырожденный газ, давление к-рого, независящее от температуры, уравновешивает силы тяготения. Малая светимость этих З. связана с расходом собственных тепловых запасов, которые постепенно истощаются, и З. медленно охлаждаются. Молодые белые карлики, окружённые остатками оболочки, наблюдаются как планетарные туманности. При массе, превосходящей 1,4 (предел Чандрасекара), стационарное состояние З. без внутр. источников энергии становится невозможным, т. к. давление не может уравновесить силу тяготения. Теоретически конечным результатом эволюции таких З. должен быть гравитационный коллапс - неограниченное падение вещества к центру. В случае, когда отталкивание частиц и др. причины всё же останавливают коллапс, происходит мощный взрыв - вспышка сверхновой с выбросом значит. части вещества З. в окружающее пространство. Это вещество от взрыва сверхновой может быть обнаружено как особая газовая туманность (см. Остатки вспышек сверхновыхКрабовидная туманность). Часть массы взорвавшейся З. может остаться в виде сверхплотного тела - нейтронной звезды или чёрной дыры. Открытые в 1967 г. новые объекты - пульсарыотождествляются с теоретически предсказанными нейтронными З.

Наконец, если конечная масса З. превышает 2-3 , то гравитационный коллапс ведёт к образованию чёрной дыры.

Вспышки сверхновых имеют фундаментальное значение для обмена веществом между З. и межзвёздной средой, для образования химических элементов (под воздействием мощных потоков нейтронов), а также для рождения первичных космических лучей.

Соседние файлы в предмете Астрономия