- •Периодический закон д. И. Менделеева
- •Изомерия
- •Получение
- •Физические свойства
- •Химические свойства
- •Применение
- •3. Как определить тип химической связи в веществе?
- •Билет № 2
- •Модели строения атома
- •Номенклатура
- •Гомологический ряд и изомерия
- •Физические свойства
- •Методы получения и химические свойства алканов.
- •3.Задача. Вычисление количества вещества одного из продуктов реакции, если известна масса исходного вещества.
- •Билет № 3
- •Теория химического строения органических соединений а.М. Бутлерова
- •Алкины. Строение, номенклатура, изомерия, физические свойства, получение
- •1. Номенклатура алкинов
- •2. Строение алкинов
- •3. Изомерия алкинов
- •4. Физические свойства и получение алкинов
- •Ионные уравнения
- •1. Если в результате реакции выделяется малодиссоциирующее вещество – вода.
- •2. Если в результате реакции выделяется нерастворимое в воде вещество.
- •3. Если в результате реакции выделяется газообразное вещество.
- •Билет № 4
- •Обратимые и необратимые химические реакции. Химическое равновесие и способы его смещения
- •1. Понятие прямой и обратной реакции
- •2. Константа равновесия
- •3. Обратимые и необратимые химические реакции
- •4. Факторы, влияющие на смещение равновесия
- •2.Спирты. Классификация спиртов. Предельные одноатомные спирты: строение и номенклатура
- •1. Названия спиртов (номенклатура июпак)
- •2. Физические свойства спиртов
- •II. Окисление
- •III. Реакции отщепления
- •1) Внутримолекулярная дегидратация
- •2) Межмолекулярная дегидратация
- •IV. Реакции этерификации
- •3. Гидролиз солей –
- •Состав, строение, свойства белков
- •Функции белков
- •Химические свойства белков
- •3. Типовые задачи на количество вещества , молярную массу и молярный объём
- •1. Основные положения теории электролитической диссоциации
- •2.Алкадиены
- •Классификация веществ. Химические свойства неорганических соединений основных классов
- •Расчеты концентрации растворенных веществ в растворах
- •Решение
- •Скорость химических реакции.
- •2. Классификация фенолов
- •3. Изомерия и номенклатура фенолов
- •4. Строение молекулы
- •5. Физические свойства
- •6. Токсические свойства
- •9. Химические свойства фенола (карболовой кислоты)
- •I. Свойства гидроксильной группы
- •Закончить уравнение возможных реакций. Указать окислитель
- •Билет № 12
- •Получение жиров.
- •Физические свойства.
- •Химические свойства.
- •Задача. Вычисление массовой доли вещества, находящегося в растворе. Формулу для вычисления массовой доли в общем виде можно записать так:
- •Пример: Рассчитайте массовую долю растворенного вещества, если при выпаривании 20 г раствора было получено 4 г соли.
- •Задача. Вычисление массовой доли вещества, находящегося в растворе. Формулу для вычисления массовой доли в общем виде можно записать так:
- •Пример: Рассчитайте массовую долю растворенного вещества, если при выпаривании 20 г раствора было получено 4 г соли.
- •Решение
- •1.1.1. Одновалентные радикалы
- •1.2. Насыщенные разветвленные соединения с одним заместителем
- •Углеводороды
- •Кислоты в свете представлений об электролитической диссоциации
- •Соли в свете представлений об электролитической диссоциации
- •Кислородсодержащие органические вещества
- •1. Понятие функциональной группы
- •2. Спирты
- •3. Карбонильные соединения
- •4. Карбоновые кислоты
- •5. Характеристика отдельных представителей
2. Если в результате реакции выделяется нерастворимое в воде вещество.
Молекулярное уравнение реакции растворимой соли со щелочью:
CuCl2 + 2KOH = 2KCl + Cu(OH)2 .
Полное ионное уравнение реакции:
Cu2+ + 2Cl– + 2K+ + 2OH– = 2K+ + 2Cl– + Cu(OH)2 .
Cокращенное ионное уравнение реакции:
Cu2+ + 2OH– = Cu(OH)2 .
Молекулярное уравнение реакции двух растворимых солей:
Al2(SO4)3 + 3BaCl2 = 3BaSO4 + 2AlCl3.
Полное ионное уравнение реакции:
Cокращенное ионное уравнение реакции:
Молекулярное уравнение реакции нерастворимого основания с кислотой:
Fe(OH)3 + H3PO4 = FePO4 + 3H2O.
Полное ионное уравнение реакции:
В данном случае полное ионное уравнение реакции совпадает с сокращенным. Эта реакция протекает до конца, о чем свидетельствуют сразу два факта: образование вещества, нерастворимого в воде, и выделение воды.
3. Если в результате реакции выделяется газообразное вещество.
Молекулярное уравнение реакции растворимой соли (сульфида) с кислотой:
K2S
+ 2HCl = 2KCl + H2S
.
Полное ионное уравнение реакции:
2K+ + S2– + 2H+ + 2Cl– = 2K+ + 2Cl– + H2S .
Cокращенное ионное уравнение реакции:
S2– + 2H+ = H2S .
Молекулярное уравнение реакции растворимой соли (карбоната) с кислотой:
Na2CO3 + 2HNO3 = 2NaNO3 + H2O + CO2
Полное ионное уравнение реакции:
Cокращенное ионное уравнение реакции:
О протекании данной реакции до конца свидетельствуют два признака: выделение воды и газа – оксида углерода(IV).
Молекулярное уравнение реакции нерастворимой соли (карбоната) с кислотой:
3СaCO3 + 2H3РO4 = Са3(PO4)2 + 3H2O + 3CO2
Полное ионное уравнение реакции:
В данном случае полное ионное уравнение реакции совпадает с сокращенным уравнением. Эта реакция протекает до конца, о чем свидетельствуют сразу три признака: выделение газа, образование осадка и выделение воды.
Запись сложных химических уравнений реакций в ионном виде
Молекулярное уравнение реакции обмена с участием воды:
2FeCl3 + 3K2CO3 + 3H2O = 6KCl + 2Fe(ОН)3 + 3СО2
Полное ионное уравнение реакции:
Cокращенное ионное уравнение реакции:
Данная реакция ионного обмена протекает до конца, о чем свидетельствуют сразу два признака: выделение газа и образование осадка.
Молекулярное уравнение реакции металлического цинка с водной щелочью:
Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2
Полное ионное уравнение реакции:
Cокращенное ионное уравнение реакции:
Молекулярное уравнение реакции амфотерного оксида с водной щелочью:
Al2O3 + 6KOH + 3H2O = 2K3[Al(OH)6].
Полное ионное уравнение реакции:
Cокращенное ионное уравнение реакции:
Молекулярное уравнение реакции нерастворимого карбоната с растворимой в воде солью:
СaCO3 + CuCl2 + H2O = Cu(OH)2 + CaCl2 + CO2
Полное ионное уравнение реакции:
СaCO3 + Cu2+ + 2Cl– + H2O = Cu(OH)2 + Ca2+ + 2Cl– + CO2
Cокращенное ионное уравнение реакции:
СaCO3 + Cu2+ + H2O = Cu(OH)2 + Ca2+ + CO2
Билет № 4
Обратимые и необратимые химические реакции. Химическое равновесие и способы его смещения
1. Понятие прямой и обратной реакции
Рассмотрим некоторую абстрактную реакцию, которую запишем в виде:
А+В→АВ, Прямая реакция. Но многие химические реакции могут идти в обратную сторону.
АВ
А+В;
Обратная реакция.
Для краткости такую реакцию записывают, используя две стрелки, одну – вперед, другую – назад.
А+В
АВ
При повышении температуры скорость большинства химических реакций увеличивается. Но оказывается, что в случае некоторых реакций продукт реакции при температуре, когда она идет с хорошей скоростью, уже начинает разлагаться. В частности, такая ситуация реализуется при взаимодействии водорода с йодом при получении йодоводорода.
Н2 + I2
(1)
Скорость химической реакции увеличивается с увеличением концентрации исходных веществ и соответственно уменьшается с уменьшением концентрации исходных веществ. Получается, что, по мере прохождения реакций, скорость прямой реакции будет уменьшаться, т. к. исходные вещества будут расходоваться. А скорость обратной реакции будет возрастать, потому что концентрация вещества АВ исходного для обратной реакции будет постепенно увеличиваться. До каких пор скорость прямой реакции будет уменьшаться, а обратной увеличиваться? Это будет до того момента, когда скорости прямой и обратной реакции станут равными. Наступит химическое равновесие. Рис. 1.
Рис. 1
Химическое равновесие – это состояние реакционной системы, в котором скорости прямой и обратной реакции равны.
