- •Периодический закон д. И. Менделеева
- •Изомерия
- •Получение
- •Физические свойства
- •Химические свойства
- •Применение
- •3. Как определить тип химической связи в веществе?
- •Билет № 2
- •Модели строения атома
- •Номенклатура
- •Гомологический ряд и изомерия
- •Физические свойства
- •Методы получения и химические свойства алканов.
- •3.Задача. Вычисление количества вещества одного из продуктов реакции, если известна масса исходного вещества.
- •Билет № 3
- •Теория химического строения органических соединений а.М. Бутлерова
- •Алкины. Строение, номенклатура, изомерия, физические свойства, получение
- •1. Номенклатура алкинов
- •2. Строение алкинов
- •3. Изомерия алкинов
- •4. Физические свойства и получение алкинов
- •Ионные уравнения
- •1. Если в результате реакции выделяется малодиссоциирующее вещество – вода.
- •2. Если в результате реакции выделяется нерастворимое в воде вещество.
- •3. Если в результате реакции выделяется газообразное вещество.
- •Билет № 4
- •Обратимые и необратимые химические реакции. Химическое равновесие и способы его смещения
- •1. Понятие прямой и обратной реакции
- •2. Константа равновесия
- •3. Обратимые и необратимые химические реакции
- •4. Факторы, влияющие на смещение равновесия
- •2.Спирты. Классификация спиртов. Предельные одноатомные спирты: строение и номенклатура
- •1. Названия спиртов (номенклатура июпак)
- •2. Физические свойства спиртов
- •II. Окисление
- •III. Реакции отщепления
- •1) Внутримолекулярная дегидратация
- •2) Межмолекулярная дегидратация
- •IV. Реакции этерификации
- •3. Гидролиз солей –
- •Состав, строение, свойства белков
- •Функции белков
- •Химические свойства белков
- •3. Типовые задачи на количество вещества , молярную массу и молярный объём
- •1. Основные положения теории электролитической диссоциации
- •2.Алкадиены
- •Классификация веществ. Химические свойства неорганических соединений основных классов
- •Расчеты концентрации растворенных веществ в растворах
- •Решение
- •Скорость химических реакции.
- •2. Классификация фенолов
- •3. Изомерия и номенклатура фенолов
- •4. Строение молекулы
- •5. Физические свойства
- •6. Токсические свойства
- •9. Химические свойства фенола (карболовой кислоты)
- •I. Свойства гидроксильной группы
- •Закончить уравнение возможных реакций. Указать окислитель
- •Билет № 12
- •Получение жиров.
- •Физические свойства.
- •Химические свойства.
- •Задача. Вычисление массовой доли вещества, находящегося в растворе. Формулу для вычисления массовой доли в общем виде можно записать так:
- •Пример: Рассчитайте массовую долю растворенного вещества, если при выпаривании 20 г раствора было получено 4 г соли.
- •Задача. Вычисление массовой доли вещества, находящегося в растворе. Формулу для вычисления массовой доли в общем виде можно записать так:
- •Пример: Рассчитайте массовую долю растворенного вещества, если при выпаривании 20 г раствора было получено 4 г соли.
- •Решение
- •1.1.1. Одновалентные радикалы
- •1.2. Насыщенные разветвленные соединения с одним заместителем
- •Углеводороды
- •Кислоты в свете представлений об электролитической диссоциации
- •Соли в свете представлений об электролитической диссоциации
- •Кислородсодержащие органические вещества
- •1. Понятие функциональной группы
- •2. Спирты
- •3. Карбонильные соединения
- •4. Карбоновые кислоты
- •5. Характеристика отдельных представителей
Закончить уравнение возможных реакций. Указать окислитель
Cu+O2=CuO (окислитель - О2)
Na+H2O=NaOH+H2 (окислитель - H20)
Ag+CuCl2 = реакция не идет,т.к. Ag не вытеснит Cu(Ag в электрохимическом ряду стоит левее Cu)
Ba+S=BaS(окислитель-S)
Al+H2SO4=Al2(SO4)3+H2 (окислитель-H2SO4)
Hq+HCl=реакция не идет,т.к. Hq не вытеснит H2(Hq в ряду стоит правее H2)
Билет № 12
КОВАЛЕНТНАЯ СВЯЗЬ - это связь, возникающая между атомами за счет образования общих электронных пар (Например, H2, HCl, H2O, O2).
По степени смещенности общих электронных пар к одному из связанных ими атомов ковалентная связь может быть полярной и неполярной.
А) КОВАЛЕНТНАЯ НЕПОЛЯРНАЯ СВЯЗЬ (КНС) - образуют атомы одного и того же химического элемента - неметалла (Например, H2, O2, О3).
Механизм образования связи.
Каждый атом неметалла отдает в общее пользование другому атому наружные не спаренные электроны. Образуются общие электронные пары. Электронная пара принадлежит в равной мере обоим атомам.
Рассмотрим механизм образования молекулы хлора:
Cl2 – кнс.
Электронная схема образования молекулы Cl2:
Структурная формула молекулы Cl2:
σ
Cl – Cl , σ (p – p) - одинарная связь
Рассмотрим механизм образования молекулы кислорода:
О2 – кнс.
Электронная схема образования молекулы О2:
Структурная формула молекулы О2:
σ
О = О
π
В молекуле кратная, двойная связь:
Одна σ (p – p)
и одна π (р – р)
Б) КОВАЛЕНТНАЯ ПОЛЯРНАЯ СВЯЗЬ (КПС) - образуют атомы разных неметаллов, отличающихся по значениям электроотрицательности (Например, HCl, H2O).
Встречаются исключения, когда ковалентную связь образуют атом неметалла и металла!
Например, AlCl3, разница в электроотрицательности ∆э.о.<1.7, т.е. ∆э.о. = 3,16 (Cl) – 1,61(Al) = 1,55
Электроотрицательность (ЭО) - это свойство атомов одного элемента притягивать к себе электроны от атомов других элементов.
Самый электроотрицательный элемент – фтор F
Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют ряд электроотрицательности элементов, предложенный американским химиком Л. Полингом.
Таблица. Электроотрицательности (ЭО) некоторых элементов (приведены в порядке возрастания ЭО).
Элемент |
K |
Na |
Ca |
Al |
H |
Br |
N |
Cl |
O |
F |
ЭО |
0.82 |
0.93 |
1 |
1.61 |
2.2 |
2.96 |
3.04 |
3.16 |
3.44 |
4.0 |
Механизм образования связи.
Каждый атом неметалла отдает в общее пользование другому атому свои наружные не спаренные электроны. Образуются общие электронные пары. Общая электронная пара смещена к более электроотрицательному элементу.
Рассмотрим механизм образования молекулы хлороводорода:
НCl – кпс.
Электронная схема образования молекулы НCl:
Структурная формула молекулы НCl:
σ
Н → Cl ,
σ (s – p)
- одинарная связь σ, смещение электронной плотности в сторону более электроотрицательного атома хлора (→)
Сложные эфиры. Жиры
Сложные эфиры. Жиры
Сложные эфиры можно рассматривать как производные кислот, у которых атом водорода в карбоксильной группе замещен на углеводородный радикал:
Номенклатура.
Сложные
эфиры называют по кислотам и спиртам,
остатки которых участвуют в их образовании,
например Н—СО—О—СН3 — метилформиат,
или метиловый эфир муравьиной кислоты;
—
этилацетат, или этиловый эфир уксусной
кислоты.
Способы получения.
1. Взаимодействие спиртов и кислот (реакция этерификации):
2. Взаимодействие хлорангидридов кислот и спиртов (или алкоголятов щелочных металлов):
Физические свойства.
Сложные эфиры низших кислот и спиртов — жидкости легче воды, с приятным запахом. В воде растворимы только сложные эфиры с наименьшим числом атомов углерода. В спирте и дизтиловом эфире сложные эфиры растворимы хорошо.
Химические свойства.
1. Гидролиз сложных эфиров — важнейшая реакция этой группы веществ. Гидролиз под действием воды — обратимая реакция. Для смещения равновесия вправо используются щелочи:
2. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:
3. Под действием аммиака сложные эфиры превращаются в амиды кислот:
Жиры. Жиры представляют собой смеси сложных эфиров, образованных трехатомным спиртом глицерином и высшими жирными кислотами. Общая формула жиров:
где R — радикалы высших жирных кислот.
Наиболее
часто в состав жиров входят предельные
кислоты пальмитиновая
и
стеариновая
и
непредельные кислоты олеиновая
и
линолевая
