- •Периодический закон д. И. Менделеева
- •Изомерия
- •Получение
- •Физические свойства
- •Химические свойства
- •Применение
- •3. Как определить тип химической связи в веществе?
- •Билет № 2
- •Модели строения атома
- •Номенклатура
- •Гомологический ряд и изомерия
- •Физические свойства
- •Методы получения и химические свойства алканов.
- •3.Задача. Вычисление количества вещества одного из продуктов реакции, если известна масса исходного вещества.
- •Билет № 3
- •Теория химического строения органических соединений а.М. Бутлерова
- •Алкины. Строение, номенклатура, изомерия, физические свойства, получение
- •1. Номенклатура алкинов
- •2. Строение алкинов
- •3. Изомерия алкинов
- •4. Физические свойства и получение алкинов
- •Ионные уравнения
- •1. Если в результате реакции выделяется малодиссоциирующее вещество – вода.
- •2. Если в результате реакции выделяется нерастворимое в воде вещество.
- •3. Если в результате реакции выделяется газообразное вещество.
- •Билет № 4
- •Обратимые и необратимые химические реакции. Химическое равновесие и способы его смещения
- •1. Понятие прямой и обратной реакции
- •2. Константа равновесия
- •3. Обратимые и необратимые химические реакции
- •4. Факторы, влияющие на смещение равновесия
- •2.Спирты. Классификация спиртов. Предельные одноатомные спирты: строение и номенклатура
- •1. Названия спиртов (номенклатура июпак)
- •2. Физические свойства спиртов
- •II. Окисление
- •III. Реакции отщепления
- •1) Внутримолекулярная дегидратация
- •2) Межмолекулярная дегидратация
- •IV. Реакции этерификации
- •3. Гидролиз солей –
- •Состав, строение, свойства белков
- •Функции белков
- •Химические свойства белков
- •3. Типовые задачи на количество вещества , молярную массу и молярный объём
- •1. Основные положения теории электролитической диссоциации
- •2.Алкадиены
- •Классификация веществ. Химические свойства неорганических соединений основных классов
- •Расчеты концентрации растворенных веществ в растворах
- •Решение
- •Скорость химических реакции.
- •2. Классификация фенолов
- •3. Изомерия и номенклатура фенолов
- •4. Строение молекулы
- •5. Физические свойства
- •6. Токсические свойства
- •9. Химические свойства фенола (карболовой кислоты)
- •I. Свойства гидроксильной группы
- •Закончить уравнение возможных реакций. Указать окислитель
- •Билет № 12
- •Получение жиров.
- •Физические свойства.
- •Химические свойства.
- •Задача. Вычисление массовой доли вещества, находящегося в растворе. Формулу для вычисления массовой доли в общем виде можно записать так:
- •Пример: Рассчитайте массовую долю растворенного вещества, если при выпаривании 20 г раствора было получено 4 г соли.
- •Задача. Вычисление массовой доли вещества, находящегося в растворе. Формулу для вычисления массовой доли в общем виде можно записать так:
- •Пример: Рассчитайте массовую долю растворенного вещества, если при выпаривании 20 г раствора было получено 4 г соли.
- •Решение
- •1.1.1. Одновалентные радикалы
- •1.2. Насыщенные разветвленные соединения с одним заместителем
- •Углеводороды
- •Кислоты в свете представлений об электролитической диссоциации
- •Соли в свете представлений об электролитической диссоциации
- •Кислородсодержащие органические вещества
- •1. Понятие функциональной группы
- •2. Спирты
- •3. Карбонильные соединения
- •4. Карбоновые кислоты
- •5. Характеристика отдельных представителей
3. Типовые задачи на количество вещества , молярную массу и молярный объём
Основные формулы. Количество вещества n=m/M, где m-масса вещества, М-молярная масса.
Число молекул N =NA·n, где N-число молекул, NA-число Авогадро ( 6,02·1023моль-1); V= V M·n, где V M =22,4 л/моль
Сколько молей составляют и сколько молекул содержат 180 мл воды H2O ? Д а н о V(H2O) = 180мл=180см3; _________________
Найти: n(H2O); N(H2O)
Решение: Плотность воды ρ(H2O)=1г/см3 m(H2O)=V(H2O)·ρ(H2O)=180см3·1г/см3=180г Находим молярную массу воды М(H2O)=2+16=18 г/моль Находим количество вещества n(H2O)=m(H2O)/М(H2O)=180г/18г/моль=10 моль Число молекул равно N(H2O) =NA·n(H2O)=6,02·1023моль-1·10 моль=6,02·1024
Ответ: 180 мл воды составляют 10 моль и содержат 6,02·1024 молекул
Определите массу 0,25 моль серной кислоты |
|
Д а н о n(H2S04) = 0,25 моль ___________________ Найти: m(H2S04) |
Решение: 1. Находим молярную массу серной кислоты М(H2S04)=2+32+64=98г/моль 2. Найдём массу вещества m=nM; m(H2S04)=n(H2S04)·M(H2S04)=0,25 моль98г/моль=24,5 г. Ответ:масса 0,25 моль серной кислоты равна 24,5 г. |
Билет № 6
1. Основные положения теории электролитической диссоциации
1. Электролиты в растворах под действием растворителя самопроизвольно распадаются на ионы. Такой процесс называется электролитической диссоциацией. Диссоциация также может проходить при расплавлении твердых электролитов.
2. Ионы отличаются от атомов по составу и свойствам. В водных растворах ионы находятся в гидратированном состоянии. Ионы в гидратированном состоянии отличаются по свойствам от ионов в газообразном состоянии вещества. Это объясняется так: в ионных соединениях уже изначально присутствуют катионы и анионы. При растворении молекула воды начинает подходить к заряженным ионам: положительным полюсом – к отрицательному иону, отрицательным полюсом – к положительному. Ионы называются гидратированными (рис. 2).
Рис. 2
3. В растворах или расплавах электролитов ионы движутся хаотично, но при пропускании электрического тока ионы движутся направленно: катионы – к катоду, анионы – к аноду.
Основания, кислоты, соли в свете теории электролитической диссоциации
В свете теории электролитической диссоциации можно дать определении основаниям, кислотам и солям как электролитам.
Основания – это электролиты, в результате диссоциации которых в водных растворах образуется только один вид анионов: гидроксид-анион: OH-.
NaOH ↔ Na+ + OH−
Диссоциация оснований, содержащих несколько гидроксильных групп, происходит ступенчато:
Ba(OH)2↔ Ba(ОН)+ + OH− Первая ступень
Ba(OH)+ ↔ Ba2+ + 2OH− Вторая ступень
Ba(OH)2↔ Ba2+ + 2 OH− Суммарное уравнение
Кислоты – это электролиты, в результате диссоциации которых в водных растворах образуется только один вид катионов: H+. Ионом водорода называют именно гидратированный протон и обозначают H3O+, но для простоты записывают H+.
HNO3↔ H+ + NO3−
Многоосновные кислоты диссоциируют ступенчато:
H3PO4↔ H+ + H2PO4- Первая ступень
H2PO4- ↔ H+ + HPO42- Вторая ступень
HPO42-↔ H+ + PO43- Третья ступень
H3PO4↔ 3H+ + PO43-Суммарное уравнение
Соли – это электролиты, диссоцирующие в водных растворах на катионы металла и анионы кислотного остатка. Na2SO4 ↔ 2Na+ + SO42−
Средние соли – это электролиты, диссоциирующие в водных растворах на катионы металла или катионы аммония и анионы кислотного остатка.
Основные соли – это электролиты, диссоциирующие в водных растворах на катионы металла, гидроксид анионы и анионы кислотного остатка.
Кислые соли – это электролиты, диссоциирующие в водных растворах на катионы металла, катионы водорода и анионы кислотного остатка.
Двойные соли – это электролиты, диссоциирующие в водных растворах на катионы нескольких металлов и анионы кислотного остатка.
KAl(SO4)2↔ K+ + Al3+ + 2SO42
Смешанные соли – это электролиты, диссоциирующие в водных растворах на катионы металла и анионы нескольких кислотных остатков
Сильные и слабые электролиты
Электролитическая диссоциация в той или иной степени – процесс обратимый. Но при растворении некоторых соединений равновесие диссоциации в значительной степени смещено в сторону диссоциируемой формы. В растворах таких электролитов диссоциация протекает практически необратимо. Поэтому при написании уравнений диссоциации таких веществ пишется или знак равенства или прямая стрелка, обозначающая, что реакция происходит практически необратимо. Такие вещества называют сильными электролитами.
Слабыми называются электролиты, в которых диссоциация происходит незначительно. При написании используют знак обратимости. Табл. 1.
Для количественной оценки силы электролита введено понятие степени электролитической диссоциации.
Силу электролита можно охарактеризовать и при помощи константы химического равновесия диссоциации. Называется она константа диссоциации.
Факторы, влияющие на степень электролитической диссоциации:
· Природа электролита
· Концентрация электролита в растворе
· Температура
При увеличении температуры и разбавлении раствора степень электролитической диссоциации увеличивается. Поэтому оценить силу электролита можно, только сравнивания их при одинаковых условиях. За стандарт принята t = 180С и с = 0,1 моль/л.
СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ |
СЛАБЫЕ ЭЛЕКТРОЛИТЫ |
Степень диссоциации при 180С в растворах с концентрацией электролита 0,1 моль/л близка к 100%. Диссоциируют практически необратимо. |
Степень диссоциации при 180С в растворах с концентрацией электролита 0,1 моль/л значительно меньше 100%. Диссоцииация необратима. |
· Щелочи · Соли · Некоторые неорганические кислоты (НNO3, HClO4,HI, HCl, HBr, H2SO4) |
|
