
- •Вопрос 1 Случайное событие. Определение вероятности (статистическое и классическое)
- •Вопрос 2 Понятие о совместных и несовместных событиях, зависимых и независимых.
- •Вопрос 3 Теоремы умножения и сложения вероятностей.
- •Вопрос 4 Распределение дискретных и непрерывных случайных величин. Их характеристики: математическое ожидание, дисперсия, среднее квадратическое отклонение.
- •Вопрос 5. Нормальный и экспоненциальный законы распределения неперывных случайных величин.
- •Вопрос 6 Функция распределения. Плотность вероятности. Стандартные интервалы.
- •Вопрос 7. Генеральная совокупность и выборка. Объем выборки. Репрезентативность.
- •Вопрос 8 Статистическое распределение (вариационный ряд) Гистограмма.
- •Вопрос 9. Характеристики положения (мода, медиана, выборочная средняя) и рассеяния (выборочная дисперсия и выборочное среднее квадратическое отклонение).
- •Вопрос 10 Оценка параметров генеральной совокупности по характеристикам ее выборки (точечная и интервальная)
- •Вопрос 11. Доверительный интервал и доверительная вероятность.
- •Вопрос 12 сравнение средних значений двух нормально распределенных генеральных совокупностей.
Вопрос 8 Статистическое распределение (вариационный ряд) Гистограмма.
Статистическое распределение - это совокупность вариант и соответствующих им частот .
Вариационный ряд - последовательность вариант, записанных в возрастающем порядке.
Гистограмма - это ступенчатая фигура, состоящая из смежных прямоугольников, построенных на одной прямой, основания которых одинаковы и равны ширине класса, а высота равна или частоте попадания в интервал или относительной частоте /n
Ширину интервала I можно определить по Формуле Стерджеса:
Вопрос 9. Характеристики положения (мода, медиана, выборочная средняя) и рассеяния (выборочная дисперсия и выборочное среднее квадратическое отклонение).
Мода (Мо)– наиболее часто встречающаяся варианта в данной совокупности.
Мода (Мо)- это такое значение варианты, что предшествующие и следующие за ней значения имеют меньшие частоты встречаемости.
Медиана (Ме) - это значение признака, относительно которого вариационный ряд делится на две равные части.
Выборочная средняя – это среднее арифметическое значение вариант статистического ряда:
Характеристики рассеяния определяют отклонение каждой варианты от средней арифметической.
Выборочная дисперсия – это среднее арифметическое квадратов отклонения вариант от их среднего значения:
Среднее квадратическое отклонение – стандартное отклонение- квадратный корень из выборочной дисперсии:
n – объем выборки
ni – частота встречаемости
xi – варианта
х – выборочное среднее
Вопрос 10 Оценка параметров генеральной совокупности по характеристикам ее выборки (точечная и интервальная)
Оценка параметра - это любая функция от значений выборки.
Параметры выборки:
Выборочное среднее
Выборочная дисперсия
Параметры генеральной совокупности:
Генеральное среднее
Генеральная дисперсия
Точечная оценка - это выборочная характеристика, используемая в качестве приближенного значения неизвестной генеральной характеристики.
- Определяется одним числом (точкой на числовой оси)
- Выборка должна быть большого объема.
- Дает лишь некоторое приближенное значение параметра.
Требование: несмещенная, состоятельная, эффективная.
Точечную оценку называют несмещенной, если ее математическое ожидание равно оценивающему параметру при любом объеме выборки.
Генеральное среднее равно математическому ожиданию выборочной средней.
Следовательно:
Несмещенной оценкой генеральной средней (математического ожидания) служит выборочная средняя:
Генеральная дисперсия не равна математическому ожиданию выборочной дисперсии.
Следовательно: выборочная дисперсия- это смещенная оценка
генеральной дисперсии.
Тут можно сказать об исправленной дисперсии. (а можно и не сказать)
Исправленная дисперсия (более точная)
Генеральная дисперсия равна математическому ожиданию исправленной дисперсии.
Интервальная оценка - это числовой интервал, содержащий неизвестный параметр генеральной совокупности заданной вероятностью.
- Определяется двумя числами – границами интервала.
- Более точная, надежная и информативная, так как дает информацию о степени близости соответствующему теоретическому параметру.
- Используется, если выборка малого объема.