Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3-Общий раздел1.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
2.18 Mб
Скачать

3. Белки острой фазы

В ходе развития защитных воспалительных реакций после инфицирования или повреждения, а также при онкогенезе и беремен­ности в организме начинается усиленная продукция белков острой фазы. Так назвали большую группу белков, обладающих антимикроб­ным действием, способствующих фагоцитозу, активации комплемента, формированию и ликвидации воспалительного очага. Белки ост­рой фазы продуцируются в печени при действии цитокинов, в основ­ном ИЛ-1, ФНО-а и ИЛ-6. Основную массу белков острой фазы составляют С-реактивный белок и сывороточные амилоиды А и Р. Другие группы белков острой фазы составляют факторы свертыва­ния крови, металлосвязывающие белки, ингибиторы протеаз, компо­ненты комплемента и некоторые другие. При воспалении содержание в крови большинства белков многократно возрастает, и определение С-реактивного белка входит в число общепринятых методов диагно­стики воспалительных процессов.

С-реактивный белок получил название вследствие способности присоединять и преципитировать С-полисахарид. Далее было установлено, что С-реактивный белок (СРБ) присоединя­ется к фосфатидилхолину - компоненту клеточной мембраны лю­бых клеток. Он способен присоединяться к микроорганизмам, акти­вированным лимфоцитам, поврежденным клеткам разных тканей, активируя при этом комплемент. Присоединяясь к нейтрофильным фа­гоцитам, СРБ усиливает фагоцитоз и элиминацию объектов фагоци­тоза. Вместе с этим СРБ подавляет продукцию супероксида и осво­бождение из гранул фагоцитов ферментов, защищая тем самым ткани от повреждения.

Сывороточный амилоид Р близок по структуре к СРБ, обладает способностью к активации комплемента.

Сывороточный амилоид А - липопротеин, обладающий способ­ностью к хематтракции нейтрофилов, моноцитов и лимфоцитов. По­вышенный уровень этого белка в крови наблюдается при туберкулезе и ревматоидном артрите.

К факторам свертывания крови относятся фибриноген и фактор фон Виллебранда, способствующие образованию сгустков в сосудах зоны воспаления.

Другую группу белков острой фазы составляют белки, связываю­щие железо - гаптоглобин, гемопексин, трансферрин - и тем са­мым препятствующие размножению микроорганизмов, нуждающих­ся в этом элементе.

Уровень ингибиторов протеаз в крови возрастает при воспалении в 2-3 раза. Антитрипсин, антихимотрипсин и макроглобулин препят­ствуют разрушению тканей протеазами нейтрофилов в очагах воспа­ления.

4.Цитокины

Медиаторы межклеточных взаимодействий, именуемые цитокинами, определяют как реакции врожденного и приобретенного иммунитета, так и ряд других жизненно необходимых функций орга­низма, значение которых выходит за рамки иммунологии.

Цитокинами называют гормоноподобные медиаторы, продуци­руемые разными клетками организма и способные повлиять на функции других или этих же групп клеток. Цитокины - пептиды или гликопротеиды, действующие как аутокринные, паракринные или межсистемные сигналы. Цитокины формируются как активи­рованными или поврежденными клетками, так и клетками без до­полнительной стимуляции. Регуляторами продукции цитокинов мо­гут быть другие цитокины, гормоны, простагландины, антигены и многие другие агенты, воздействующие на клетку. Некоторые зако­номерности цитокиновой регуляции могут быть сформулированы следующим образом:

  • Каждая клетка продуцирует разные цитокины.

  • Каждый цитокин может быть продуктом разных видов клеток.

  • Один цитокин обладает разными эффектами действия.

  • Цитокин может стимулировать или подавлять активность клетки-«мишени».

  • Каждая клетка имеет рецепторы к разным цитокинам и, следо­вательно, может подвергаться одновременному или разновременному воздействию нескольких цитокинов.

  • Взаимодействие нескольких цитокинов на клетку может быть синергичным или антагонистичным.

  • Рецепторы цитокинов могут отделяться от клетки и взаимодей­ствовать с цитокинами вне клетки. В этих условиях свободные ре­цепторы связывают соответствующие цитокины, что препятствует их контакту с клеточными рецепторами.

  • Цитокины, их рецепторы на клетках и во внеклеточных средах составляют сложную функциональную сеть, результат действия кото­рой зависит от взаимодействия этих факторов между собой и други­ми цитокинами.

  • Цитокины действуют в низких концентрациях порядка 0,001 мкг/мл. Для воздействия на клетку достаточно, чтобы цитокин свя­зался с 10% клеточных рецепторов к нему.

Цитокины составляют обширный класс медиаторов различного происхождения, обладающих разными свойствами. Их классифика­ция носит условный характер, так как многие их них обладают одно­временно несколькими свойствами и могут быть отнесены к разным группам. Цитокины объединены в группы в зависимости от их про­исхождения (лимфокины, монокины), от характера эффекта (провос-палительные, противовоспалительные). Цитокины, регулирующие вза­имодействия лейкоцитов между собой и другими клетками, называ­ют интерлейкинами (ИЛ). Большинство цитокинов именуется по действию, которое было впервые обнаружено.

Группа интерлейкинов включает 17 цитокинов, большинство из которых играет ключевую роль в развитии специфического иммунно­го ответа.

Продуцируемый макрофагами и моноцитами ИЛ-1 обуславливает проли­ферацию лимфоцитов при индукции иммунного ответа, а также активирует Т-лимфоциты, увеличивает продукцию антител. ИЛ-1 действует на нейтрофилы, способствуя хемотаксису, активации метаболизма, выходу из клеток лизоцима и лактоферрина. Этот цитокин - эндогенный пироген, вызывающий лихорадку за счет воздействия на гипоталамический центр терморегуляции.

ИЛ-2 продуцируется Т-лимфоцитами (в основном Тх1), активированны­ми антигеном, собственным ИЛ-2, другими интерлейкинами: ИЛ-1, ИЛ-6, интерфероном, фактором некроза опухоли (ФНО). Без ИЛ-2 позитивный им­мунный ответ на антиген не возникает, стимулированный антигеном лимфо­цит гибнет, что может привести к развитию толерантности к данному анти­гену. Интерлейкины ИЛ-4 и ИЛ-10 подавляют продукцию ИЛ-2. Это способ­ствует развитию эффекторов гиперчувствительности замедленного типа (ГЗТ), формированию киллеров из СD8+ лимфоцитов, усилению действия ЕК. Все это стимулирует противоопухолевый иммунитет и позволяет рекомендовать рекомбинантный ИЛ-2 для лечения онкологических больных.

Факторы роста — большая группа гликопротеинов, контролиру­ющих пролиферацию и созревание потомков стволовой кроветвор­ной клетки. Они продуцируются разными видами клеток и действу­ют на разные этапы их развития.

Колониестимулирующие факторы (КСФ) получили свое название благодаря тому, что было обнаружено их свойство способствовать дифференцировке введенных мышам клеток костного мозга в зрелые гранулоциты и/или моноциты с образованием в селезенке животных ко­лоний соответствующих клеток. Гранулоцитарный КСФ обеспечивает дифференцировку предшественников гранулоцитов в зрелые нейтрофи-лы. Моноцитарный КСФ способствует созреванию моноцитов и мак­рофагов из клеток-предшественников, а гранулоцитарно-моноцитарный КСФ стимулирует формирование гранулоцитов и макрофагов из их общих предшественников.

Интерфероны (ИФ) были открыты как противовирусные аген­ты. Затем были обнаружены их иммунорегулирующие свойства. Су­ществует три разновидности ИФ

У здоровых людей ИФ в крови не обнаруживаются. Их уровень повышен при красной волчанке, ревматоидном артрите, склеродер­мии. Наличие интерферона в крови этих больных увеличивает рези­стентность к вирусным инфекциям и опухолям, но неблагоприятно сказывается на развитии аутоиммунных процессов, свойственных этим заболеваниям.

Препараты интерферонов используются для лечения лейкемий и некоторых других онкологических процессов. Для усиления противо­вирусной защиты используют средства, повышающие продукцию собственного интерферона (интерфероногены). В качестве индукто­ров эндогенного интерферона применяют противовирусные вакцины, препараты РНК и ДНК.

Цитотоксины. Такое название получили цитокины группы фак­торов некроза опухолей (ФНО), который был впервые обнаружен как компонент сыворотки крови животных, стимулированных бактерий­ным токсином, вызывающий некротические процессы в опухолевой ткани. ФНО служит медиатором ответа организма на микробную инвазию. Эндотоксины (липиполисахариды) микробов стимулируют клетки-продуценты к образованию ФНО, который, в свою очередь, обеспечивает хемотаксис фагоцитов в инфицированную ткань и уси­ливает фагоцитоз возбудителей. В настоящее время известно, что ФНО составляют по крайней мере две группы (альфа и бета) медиаторов, продуцируемых активированными макрофагами, естественными кил­лерами, а также лимфоцитами, нейтрофилами и тучными клетками.

Завершая рассмотрение цитокинов и их эффектов, необходимо подчеркнуть, что в механизмах иммунитета участвуют две группы противоположно действующих цитокинов. Одна группа провоспалительные цитокины (ИЛ-1, ИЛ-6, ИЛ-8 и другие лимфокины, ФНО-а, а также ИФ), стимулируя разные клетки и механизмы, усиливают врожденную неспецифическую защиту, воспаление, способствуют развитию специфических иммунных реакций. Вторая функциональная группа противовоспалительные цитокины (ИЛ-4, ИЛ-10, ИЛ-13, ТРФ) подавляет развитие как неспецифических, так и специфических иммунных реакций.

Адгезины. Среди факторов, определяющих прямые контакты клеток орга­низма между собой и с представителями микрофлоры, существенную роль играют молекулы адгезии или адгезины. Предполагается, что в эволюции живого появление молекул адгезии сделало возможным возникновение мно­гоклеточных организмов. Более 90% микробов, составляющих нормальную микрофлору человеческого организма, обитают в нем благодаря молекулам адгезии. Блокирование адгезии патогенных микроорганизмов к клеткам и тканям организма — один из основных путей антимикробной защиты. Моле­кулы адгезии экспрессируются на мембранах клеток, определяя их способ­ность контактировать с другими клетками и неклеточными субстратами. Ре­цепторами молекул адгезии в организме могут быть другие молекулы адгезии на поверхности клеток, углеводные компоненты мембран, иммуноглобулины. Количество молекул адгезии и рецепторов к ним увеличивается при антиген­ной или любой другой активации клеток.

В ходе иммунного ответа молекулы адгезии определяют контакты антиген-представляющих клеток с лимфоцитами и лимфоцитов между собой. Молеку­лы адгезии входят в состав рецепторов иммунокомпетентных клеток и опреде­ляют тропность клеток иммунной системы к определенным тканям или орга­нам — хоминг-эффект (англ. Ноте — дом).

Молекулы адгезии условно разделяют на группы: селектины, интегрины, молекулы суперсемейства иммуноглобулинов.

Селектины — семейство поверхностных молекул адгезии, определяю­щие присоединение клеток к углеводным компонентам других структур.

Интегрины — большая группа молекул, определяющая взаимодействия белок-белок.Интегрины играют роль в межклеточных контактах при воспалении, реакциях иммуните­та, аутоиммунных повреждениях тканей, процессах репарации. Интегрины экспрессируются на клетках опухолей и играют роль в процессах метастази-рования. Их определение используется для диагностики разных видов злока­чественных опухолей.

К молекулам суперсемейства иммуноглобулинов относится более 15 ва­риантов молекул, которые обозначаются заглавными латинскими буквами, соответствующими обозначению их функции: адгезии клетка-клетка или бе­лок-белок.

К молеку­лам адгезии суперсемейства иммуноглобулинов относятся СD4+, СD8+ моле­кулы Т-лимфоцитов, определяющие их контакты со структурами МНС II или I класса и дифференцировку этих двух классов Т-клеток между собой.

Адгезины формально не относятся к системе цитокинов, но обладают мно­гими сходными с ними функциями и участвуют в межклеточной кооперации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]