- •Министерство охраны здоровья Украины
- •Крымский государственный медицинский университет
- •Им. С.И. Георгиевского
- •Основы патофизиологии
- •Ч.1 общая патология. Типовые патологические процессы.
- •7.110104 «Педиатрия»
- •7.110106 «Стоматология»
- •7.110201 «Фармация» г.Симферополь – 2010 г.
- •Общая этиология
- •Роль реактивности в патологии. Патология иммунологической реактивности
- •Пассивная и активная резистентность
- •1.Фагоцитирующие клетки
- •2.Естественные клетки-киллеры (ек, natural killer-nk-клетки)
- •1.Лизоцим
- •2.Система комплемента
- •3. Белки острой фазы
- •4.Цитокины
- •5.Белки теплового шока
- •Вторичные иммунодефициты, или иммунодефицитные состояния
- •Патохимическая стадия
- •Патофизиологическую стадия Характер патологических явлений, наблюдающихся при рассматриваемом типе аллергий, во многом определяется особенностями мишеней, поражаемых цитолитическим процессом.
- •Местные расстройства кровообращения.Артериальная и венозная гиперемия
- •Резистивные сосуды, создавая периферическое сопротивление, как бы "замыкают" зону высокого давления, препятствуя переходу крови из этой зоны на периферию.
- •Местные расстройства кровообращения. Ишемия. Эмболия.Тромбоз ишемия
- •Тромбоз
- •Эмболия
- •Интегральные механизмы повреждения и гибели клетки
- •2.Эндогенная:
- •I. Провоспалительные медиаторы( медиаторы альтерации и экссудации)
- •3.Биогенные амины:
- •4. Полипептидные медиаторы:
- •5.Липидные медиаторы.Компоненты системы эйкозаноидов
- •II.Противовоспалительные медиаторы( медиаторы пролиферации)
- •III.Регуляторы пролиферации
- •Нарушения физиологических функций при лихорадке Центральная нервная система
- •• Низкая активность механизмов противоопухолевой защиты организма (см. Ниже).
- •Патофизиология обмена веществ
- •Патофизиология белкового обмена,обмена нуклеотидов, жирового обмена.
- •Патофизиология водно-электролитного обмена
- •Патофизиология макро- и микроэлементов. Патофизиология витаминов Гомеостаз натрия и его нарушения.
- •Патофизиология кислотно-щелочного равновесия.Патофизиология фосфорно-кальциевого обмена
Тромбоз
Тромбоз - прижизненное внутрисосудистое свертывание крови, приводящее к образованию конгломератов, состоящих из фибриновых сгустков и форменных элементов крови.
Тромбоз — защитный физиологический ответ тканей на повреждение. Если процесс тромбоза избыточен или недостаточен — он становится источником тяжелой патологии
Тромбоз это работа всей системы гемостаза и антигемостаза (совокупность механизмов, обеспечивающих остановку кровотечения). Основная цель системы гемостаза — остановка кровотечения и восстановление целостности сосудистой стенки.
Выделяют три основных звена гемостаза:
1. Сосудистое звено осуществляет спазм поврежденного сосуда и активирует процессы тромбообразования и свёртывания.
2. Клеточное (тромбоцитарно-лейкоцитарное) звено, его основная задача которого — формирование белого тромба
3. Фибриновое звено — активация системы свертывания крови, формирование красного тромба.
Все три звена гемостаза запускаются одновременно в момент повреждения сосуда.
В патогенезе тромбоза Р. Вирхов выделял 3 фактора ("триада Вирхова"):
1. повреждение сосудистой стенки;
2. замедление кровотока;
3. повышение свертываемости крови.
Первый фактор рассматривают как производящую причину, второй и третий - как предрасполагающие.
Повреждение сосудистой стенки:
а) способствует активации XII фактора и тромбоцитов (обнаженный коллаген, ферменты протеолиза, тромбоксаны, АДФ и др. БАВ);
б) выключает антисвертывающую функцию эндотелиоцитов (поврежденные эндотелиоциты перестают выделять простациклины);
в) сопровождается местным спазмом сосудов и нарушениями кровотока (турбулентностями, завихрениями).
Замедление кровотока способствует тромбообразованию.
Замедление кровотока способствует повышению концентрации БАВ и активированных факторов свертывания крови, позволяет достичь критических концентраций, необходимых для свертывания крови.
Последствия тромбоза
Положительные:
а) тромб механически укрепляет неполноценную, патологически истонченную стенку сосуда, например, при аневризмах.
б) тромб, временно, способствует прекращению кровотечения (при повреждении сосудов крупного калибра, при повышении давления в результате улучшения состояния больного, тромб, может быть "вытолкнут" и кровотечение может возобновиться)
Отрицательные:
а) венозная, застойная гиперемия при перекрытии тромбом венозного сосуда;
б) ишемия при тромбозе артерии.
Профилактика и лечение тромбозов включает мероприятия направленные на предупреждение повреждения сосудистой стенки и повышение антикоагуляционных свойств крови.
При наличии тромба проводится антикоагуляционная и фибринолитическая терапия.
Эмболия
Эмболия – перенесение стоком крови и закупорка сосудов инородными телами. Эти тела называются эмболами.
По происхождению эмболы могут быть:
- экзогенными (пузырьки воздуха, личинки гельминтов, микробы, различные другие инородные частицы и т.д.);
- эндогенными (тромбы, жировые клетки, клетки паренхиматозных органов и т.д.).
Эмболии делятся на:
1. Эндогенные:
- Жировая эмболия – закупорка сосудов эндогенными липопротеидными частицами
- Тканевая эмболия – закупорка сосудов амниотической жидкостью, клетками опухоли, жировой тканью
- Газовая эмболия – закупорка эндогенными пузырьками азота при резком понижении их растворимости в крови, например при кессонной и высотной болезни.
- Тромбоэмболия - закупорка сосуда оторвавшимися тромбами или их частицами
- Опухолевая эмболия – закупорка небольшими фрагментами распадающейся опухолевой ткани.
2. Экзогенные
- Микробная и паразитарная эмболия – наблюдается при сепсисе, паразитарных инвазиях, бактериемии.
- Воздушная эмболия – закупорка сосудов пузырьками атмосферного воздуха при ранении легкого и развитии пневмоторакса, искусственном кровообращении, ранении крупных вен
- Эмболия инородными телами – закупорка сосудов инородными телами при ранениях и при медицинских инвазивных манипуляциях.
По локализации различают эмболию
- большого круга кровообращения
- малого круга кровообращения и
- системы воротной вены.
Эмболия большого круга кровообращения. Эмболы из вен попадают в полость работающего правого сердца и блокируют сосуды малого круга кровообращения. При эмболии большого круга кровообращения попадание эмболов в сосуды мозга и сердца возникают участки ишемии, ведущие к гибели клеточных элементов, нарушению функции.
Эмболия малого круга кровообращения.
Источник эмбола – глубокие вены нижних конечностей из них эмбол попадет в общую подвздошную вену и далее в нижнюю полую вену, откуда путь - в правое предсердие, правый желудочек и, наконец, в легочный ствол и легочные артерии. Очень важно, каков по размерам эмбол. Закупорка самых крупных сосудов приводит к внезапной смерти вследствие нарушения кровотока через малый круг кровообращения и резкого падения кровяного давления в магистральных сосудах большого круга кровообращения. Если же нарушается кровообращение в сегменте легкого, то это не нарушает общего кровообращения, а приведет к ишемии участка легкого, то есть местному малокровию, и омертвению части легочной ткани, что называется инфарктом легкого.
Эмболии воротной вены развивается в результате патологических изменений в бассейне воротной вены. Источник эмбола – органы брюшной полости, которые ведут к закупорке v. Porta в результате происходит сброс венозной крови, оттекающей из кишечника в обход печени через порто-кавальные анастомозы.
ПАТОФИЗИОЛОГИЯ КЛЕТКИ
Клетка является элементарной саморегулирующейся структурно-функциональной единицей тканей и органов. В ней протекают процессы , лежащие в основе энергетического и пластического обеспечения изменяющихся структур и уровня функционирования тканей и органов.
Главной функцией клетки является осуществление обмена со средой информацией, веществом и энергией, что подчинено в конечном счете задаче сохранения клетки как целого при изменении условий существования.
.
Структурно- функциональная организация клетки:
Ядро- содержит генетический материал клетки.
Мембрана - обеспечивает целостность структур клетки.
Лизосомы - содержат широкий спектр гидролитических ферментов.
Митохондри и - обеспечивают энергетические потребности клетки.
Рибосомы - обеспечивают синтез белков.
Эндоплазматическая сеть - мембранная структура содержащая рибосомы и детоксицирующие ферменты.
Аппарат Гольджи - накапливает и распределяет белки, необходимые для построения различных структурных элементов клетки.
Под повреждением клетки понимают такие изменения ее, структуры, функций, метаболизма, физико-химических свойств, которые ведут к нарушению ее жизнедеятельности.
Причины повреждения клеток
Нарушения внутриклеточного гомеостаза, составляющие сущность повреждения клетки, могут возникать как в результате непосредственного воздействия на клетку патогенного агента, так и опосредованно, вследствие нарушений постоянства внутренней среды самого организма.
Непосредственное (первичное) повреждение. В зависимости от происхождения все факторы, способные при взаимодействии с клеткой вызвать ее повреждение, можно разделить на 3 группы:
1. Физические факторы:
-механические воздействия: удары, растяжения, сдавление, гравитационные перегрузки, и др.;
-колебания температуры;
-изменения осмотического давления в клетке (накопление продуктов неполного окисления или избытка ионов );
-воздействие ионизирующей радиации (образование свободных радикалов и активацией перикисных липопероксидных процессов, продукты которых повреждают мембраны и денатурируют ферменты клеток);
2.Факторы химического происхождения.
Повреждение клетки могут вызвать неорганические вещества (кислоты, щелочи, соли тяжелых металлов), низкомолекулярные органические соединения (кислоты, щелочи,фенолы, альдегиды, галогеновые производные), высокомолекулярные соединения(гидролитические ферменты, основные катионные белки, иммуноглобулины, комплексы антиген-антитело, комплемент).В настоящее время описано более 20 000 химических соединений, оказывающих повреждающее действие.
3.Факторы биологической природы.
К ним относятся вирусы, риккетсии, микроорганизмы, паразиты, грибки; продукты их жизнедеятельности или деградации вызывают расстройства функции клеток, нарушение в них метаболических процессов ( проницаемость и целостность мембран, активность клеточных ферментов); сходство антигенов; ферменты, белки, липиды, чрезмерная физическая нагрузка.
Опосредованное (вторичное) повреждение. Возникает как следствие первичных нарушений постоянства внутренней среды организма. К повреждению клетки приводят гипоксия, гипо- и гипертермия, ацидоз и алкалоз, гипер- и гипоосмия, гипогликемия, гиповитаминозы, повышение содержания в организме конечных продуктов метаболизма, оказывающих токсическое действие (аммиак, билирубин и др.).
Классификация патологических процессов в клетке.
Современное представление о природе болезней базируется на двух основных аспектах – материально-энергетическом и информационном, поскольку болезнь может быть связана как повреждением исполнительного клеточного аппарата ( включая ДНК- материальный носитель клеточных программ), так и с нарушением информационных процессов – сигнализации, рецепции и т.п.
Исходя из этого выделяют следующие виды клеточных повреждений:
Информационные повреждения:
-патология сигнализации;
-патология рецепции;
-нарушения пострецепторных посредников;
-дефекты клеточных программ.
Повреждения исполнительного аппарата клетки:
-типовые молекулярные механизмы повреждений исполнительного аппарата;
-повреждения ядра;
-повреждения мембран;
- повреждения митохондрий и нарушения процессов энергообеспечения клетки;
-повреждения лизосом и активация процессов ограниченного протеолиза.
Интегральные механизмы повреждения клетки:
-адаптация клетки (гипертрофия, гиперплазия, гиперфункция);
- механизмы гибели клеток:
1) апоптоз;
2) некробиоз и некроз.
ИНФОРМАЦИОННЫЕ ПОВРЕЖДЕНИЯ КЛЕТКИ
Патология сигнализации
Клеточные адаптационные программы включаются в ответ на определенные входные сигналы. В большинстве случаев клетки в организме управляются химическими регуляторными сигналами. Кажется, что разнообразие таких сигналов бесконечно. На самом деле, все они принадлежат к одной из пяти возможных категорий. Это могут быть:
Гормоны
Медиаторы
Антитела
Субстраты
Ионы.
Недостаток или отсутствие того или иного сигнала может воспрепятствовать включению тех или иных адаптивных программ, что приводит к определенным патологическим последствиям.
Избыток того или иного сигнала заставляет адаптивные программы, включаемые данным регулятором функционировать излишне интенсивно или ненормально долго, что также патогенно.
Особый случай представляет достаточно распространенная ситуация, когда клетка ошибочно принимает один сигнал за другой — так называемая мимикрия биорегуляторов, приводящая к серьезным регуляторным расстройствам.
Таблица1 содержит некоторые примеры, иллюстрирующие разнообразие патологии сигнализации в организме.
Таб.1. Виды информационных нарушений в клетке
Биорегулятор |
Избыток сигнала |
Дефицит сигнала |
Мимикрия сигнала |
Гормон |
Синдром Иценко-Кушинга |
Инсулинзависимый сахарный диабет |
Болезнь фон Базедова (мимикрия антителами) |
Нейромедиатор |
Отравление цикутой |
Паркинсонизм |
Тяжелая миастения (мимикрия антителами) |
Антитело |
Аллергический энцефаломиелит |
В-клеточный иммунодефицит |
Астматический статус (имитация антителами бронхолитика) |
Субстрат |
Ожирение |
Квашиоркор |
Действие некоторых цитостатиков-антиметаболитов (6-меркаптопурин) |
Ион |
Гиперкалиемия |
Гипокальциемия |
Отравление тетраэтиламмонием (имитация катиона калия) |
Заболевания, вызванные неправильным использованием клетками своего программного аппарата вследствие неправильной сигнализации весьма разнообразны. Так, при дефиците инсулина отсутствие входного сигнала не дает возможности использовать программы синтеза инсулинозависимых белков-транспортеров глюкозы, что приводит к нарушению утилизации этого субстрата инсулинзависимыми тканями.
Разрушение или блокада функций дофаминэргических нейронов среднего мозга при паркинсонизме приводит к дефициту дофамина в подкорковых ядрах и инактивации дофаминзависимых автоматизмов регуляции движений.
Нехватка или отсутствие иммуноглобулинов сопровождает В-клеточные и смешанные иммунодефициты.
Примером болезни, вызванной дефицитом субстратов, может служить квашиоркор. Дефицит кальция приводит к нарушению работы многих внутриклеточных систем, включая сократительные белки, а также межклеточные медиаторные системы, функция которых связана с каскадным ограниченным протеолизом (например, система фибринолиза).
Избыток глюкокортикоидов при синдроме Иценко-Кушинга заставляет клетки избрать неадекватные программы метаболической регуляции, что приводит к усилению липогенеза и глюконеогенеза, отрицательному азотистому балансу, метаболическому алкалозу и даже вызывает запрограммированную клеточную гибель посредством апоптоза (в частности, в лимфоидных органах).
Избыточный холинэргический нейромедиаторный сигнал при отравлении аконитом (цикутой) приводит к расстройству вегетативной, регуляции жизненно важных функций.
Избыточная продукция аутоантител приводит к аутоаллергическим заболеваниям, хотя в небольших титрах аутоантитела присутствуют у абсолютно здоровых людей и участвуют в регуляции клеточного роста и функций.
Избыток ионов калия, создающийся при массивном цитолизе или длительной анурии нарушает программные автоматизмы, связанные с работой проводящей системы сердца и ведет к аритмии.
Особый интерес представляет мимикрия клеточных сигналов, когда рецептор, контролирующий включение тех или иных программ, стимулируется или блокируется нештатным сигналом, ошибочно принятым клеткой за гормональный или медиаторный стимул.
Ситуации, связанные с мимикрией сигналов, как правило, вовлекают иммунную систему и чаще всего речь идет о выработке аутоантител, иммунологически копирующих те или иные гормоны или медиаторы, способных связываться с соответствующими рецепторами.
Так, при болезни фон Базедова (диффузный токсический зоб) клетки щитовидной железы усиленно растут и размножаются (гиперплазия) и усиленно синтезируют тироксин и трийодтиронин (гиперфункция), несмотря на то, что содержание естественного стимулятора тиреоцитов — тиреотропного гормона гипофиза — у подавляющего большинства пациентов понижено или нормально. В организме больных вырабатываются антитела против мембранных рецепторов к тиреотропину.Как известно, секреция тиреотропина при наличии в крови достаточных количеств тироксина подавляется, и щитовидная железа перестает на какое-то время вырабатывать тироксин. Что касается антител, то их накопление от содержания тиреоидных гормонов практически не зависит, и избыточная стимуляция железы происходит непрерывно.
При печеночной коме, вследствие нарушения метаболизма индоловых соединений в печени, образуется ложный нейромедиатор - октопамин, нарушающий, в качестве фальшивого сигнала, работу мозга, что ведет к извращению сна и бодрствования, хлопающему тремору и другим нарушениям.
Нарушения рецепции сигналов
Даже при адекватной сигнализации клетка не в состоянии ответить должным образом при отсутствии или дефиците рецепторов, соответствующих какому-либо биорегулятору. Избыточная активность (чувствительность) тех или иных рецепторов также способна привести к патологическим последствиям.
Так,например, патогенез семейной наследственной гиперхолестеринемии, этого распространенного и тяжелого нарушения связан с дефектом белка-рецептора, ответственного за распознавание клетками сосудистой стенки и некоторых других тканей и органов белкового компонента липопротеидов низкой и очень низкой плотности — апопротеина В. Вследствие этого формируется атеросклеротическое поражение.
Избыточная активность тех или иных рецепторов также патогенна.
При развитии инсульта гибель нейронов от гипоксии сопряжена с избыточной стимуляцией рецепторов глютаминовой кислоты. Адаптационный смысл этого состоит в усилении генерации окиси азота (N0) — сильного сосудорасширяющего медиатора, регулятора адгезии нейтрофилов и активности циклооксигеназы, повышающего резистентность нейронов к свободно-ради-кальному повреждению. Однако, рецепторы, находясь в состоянии длительной активации, обуславливают избыточный входной ток кальция в клетку, и это ведет к повреждению и некробиозу нейронов.
Наследственный дефект рецепторов к антидиуретическому гормону обуславливает развитие периферического нефрогенного несахарного диабета.
Нарушения функционирования пострецепторных посредников
Быстрый, непосредственный ответ клеток на химические сигналы, который часто играет решающую роль в адаптации, для биорегуляторов с любой химической структурой опосредован поверхностными рецепторами и пострецепторными передаточными механизмами.
Дефекты в функционировании этих внутриклеточных посредников приводят к разнообразным повреждениям клеток.
Большинство химических сигналов в клетке опосредуется с участием так называемых гуанозинтрифосфатсвязывающих белков (или G-белков). Эти передатчики занимают ключевое положение в обмене информацией между поверхностным и регуляторным аппаратом клеток, потому что они интегрируют сигналы, воспринимаемые несколькими различными рецепторами, и в ответ на определенный рецепторно-опосредованный сигнал могут включать множество разных эффекторных программ, вводя в действие сеть различных внутриклеточных модуляторов.
Среди этих взаимодействующих эффекторов главные роли играют аденилатциклазы, ионные каналы и фосфолипазы.
Передавая рецепторный сигнал внутрь клетки, G-белки усиливают активность аденилатциклаз, образующаяся цикло-АМФ может напрямую открывать ионные натриевые каналы, а также запускает каталитическую субъединицу протеинкиназ А. Протеинкиназы А расщепляют АТФ и фосфорилируют по остаткам серина или треонина различные каталитические и распознающие белки клетки. Этот процесс для одних белков приводит к активации, для других к ингибированию. Ингибирующие сигналы запускаются ц-АМФ и при посредстве кальция и внутриклеточного кальцийсвязывающего белка кальмодулина.
Ряд G-белков способны активировать семейство ферментов-инозитолфос-фатаз, условно названных «фосфолипаза С». Этот эффект приводит к расщеплению фосфатидилинозитол-4,5-дифосфата на инозитолтрифосфат (ИТФ) и диацилглицерол (ДАГ).ИТФ вызывает освобождение кальция из внутриклеточных резервуаров в цитоплазму. Кальций влияет на активность различных клеточных белков через кальмодулин и тропонин С, а также непосредственно. ДАГ действует, как вторичный посредник в активации протеинкиназ С, повышая их чувствительность к кальциевой стимуляции. Протеинкиназы класса С фосфорилируют ряд белков, влияя на их активность. Эта сеть имеет общие субстраты фосфорилирования с протеинкиназами А. ДАГ-липаза расщепляет данный посредник и терминирует передачу сигнала, но при этом образуется арахидоновая кислота.
Кроме фосфолипазы С и ДАГ-липазы, продукция арахидоновой кислоты из материала плазматической мембраны осуществляется, практически во всех ядерных клетках организма и в ряде безъядерных постклеточных структур (кроме эритроцитов), с помощью семейства кальцийзависимых изоферментов, традиционно обозначаемого как фосфолипаза А2.
Образуемые из арахидоновой кислоты эйкозаноиды являются как внутриклеточными посредниками сигналов (например, влияя на проницаемость ионных каналов клеток), так и координаторами совместного ответа соседних клеток на повреждение.
Пострецепторные поломы лежат в основе многих заболеваний в , которые издавна известны врачам.Так, понос и водно-электролитные нарушения при холере вызваны действием холерного токсина. Данный экзотоксин вызывает АДФ-рибозилирование а-субъединиц G -белка в клетках кишечного эпителия, что ведет к его активации и избыточной продукции цикло-АМФ. В результате избыточной продукции клеткой цикло-АМФ начинается экскреция воды и электролитов в просвет кишечника.
При коклюше экзотоксины бордетеллы стойко связывают а-субъединицы Gi/Go белков в бронхах, а также действуют сами в качестве кальмодулинзависимой аденилатциклазы. Вследствие этого, содержание цикло-АМФ в клетках растет, что обусловливает ряд симптомов, включая снижение бактерицидной активности лейкоцитов и кашель.
Дефекты клеточных программ
При многих болезнях клеточные адаптационные программы нормально востребуются информационными системами клетки, однако, сама программа содержит технические или технологические дефекты. Из-за этого она либо не реализуется, либо дает неадекватный или несоответствующий ситуации результат.
Кратко остановимся на патологических процессах, порождаемых дефектами клеточных программ или мутациями.
Под наследственными понимают заболевания с первичными техническими дефектами в программном аппарате клеток, передаваемые по наследству через гаметы. Конечно, только мутации половых клеток передаются из поколения в поколение.
Соматические мутации искажают запись генетической программы в неполовых клетках и, в результате митоза, передаются всему потомству данной клетки-то есть клону. Соматические мутации, хотя и не передаются потомству организма, имеют большое медицинское значение, так как порождают клональные заболевания. При клональных болезнях в организме живет самоподдерживающаяся линия клеток с ненормальной программой.
К клональным относятся доброкачественные и злокачественные опухоли, клональную природу имеют лейкозы и другие гемобластозы, а также некоторые болезни тех тканей и органов, где клеточный пул быстро обновляется (например, пароксизмальная ночная гемоглобинурия, макроглобулинемия Вальденстрема и другие болезни крови и иммунной системы).
Некоторые приобретенные до рождения заболевания похожи по клинической картине на наследственные врожденные синдромы. Такие болезни именуются фенокопиями. Так, патологическая желтуха у новорожденного может быть обусловлена наследственными нарушениями захвата, конъюгации или экскреции билирубина (например, синдромами Жильбера, Криглера-Наджара,Дабина-Джонсона и Ротора), но может развиться и как фенокопия вследствие внутриутробного гепатита или ненаследственной атрезии желчных ходов.
ПОВРЕЖДЕНИЕ ИСПОЛНИТЕЛЬНОГО АППАРАТА КЛЕТКИ
Все многообразные защитно-компенсаторные реакции клетки в ответ на ее повреждение можно условно разделить на 2 группы:
1) направленные на восстановление нарушенного внутриклеточного гомеостаза;
2) направленные на создание функционального покоя поврежденной клетки. Первая группа включает в себя активацию механизмов активного транспорта ионов, репаративный синтез поврежденных компонентов клетки, усиленную регенерацию антиоксидантных систем и др. Непременным условием реализации этих механизмов является достаточное энергетическое обеспечение клетки. Это достигается, с одной стороны, повышением интенсивности энергетического обмена (активация гликолиза, клеточного дыхания, пентозного цикла), а с другой - перераспределением имеющихся в клетке энергетических ресурсов.
Вторая группа реакций направлена на то, чтобы устранить возможные дополнительные сдвиги внутриклеточного гомеостаза при действии физиологических нервных и гуморальных возмущающих факторов (стабилизация повреждения) и свести к минимуму энергетические траты на выполнение специфических функций клетки, обеспечив таким образом энергетические ресурсы для восстановления нарушенного гомеостаза
Можно выделить 6 групп молекулярных механизмов, имеющих важное значение в патогенезе повреждения клетки: липидные, кальциевые, электролитно-осмотические, ацидотические, протеиновые и нуклеиновые.
1.Липидные механизмы повреждения клетки включают в себя:
- перекисное окисление липидов;
- активацию мембранных фосфолипаз;
- детергентное действие свободных жирных кислот.
Перекисным окислением липидов (ПОЛ) называется свободнорадикальное окисление ненасыщенных жирных кислот, входящих в состав фосфолипидов клеточных мембран. Инициаторами ПОЛ являются свободные радикалы, среди которых наибольшее значение имеют активные кислородсодержащие радикалы (АКР): супероксидный анион-радикал, гидроксильный радикал, водородный радикал, синглетный (возбужденный) кислород, у которого один из электронов перешел на более высокий энергетический уровень.
В процессе повреждения клетки возможны 2 механизма активации ПОЛ.
Первый механизм — избыточное образование первичных свободных радикалов. В такой ситуации имеющиеся в клетке антиоксидантные системы не в состоянии «потушить» реакции ПОЛ. По данному механизму происходит активация ПОЛ в случае повреждаюшего воздействия на клетку ультрафиолетовых лучей, ионизирующей радиации,гипероксии,четыреххлористого углерода; в условиях сильного стресса (образование свободных радикалов из катехоламинов); при гипервитаминозе Д (образование свободных радикалов в результате процессов аутоокисления эргокальциферола).
Второй механизм активации ПОЛ — нарушение функционирования антиоксидантных систем клетки. В этом случае инициаторами ПОЛ являются первичные свободные радикалы, образующиеся в процессе естественно протекающего обмена вешеств.
Антиоксиднты — это молекулы, обладающие лабильным водородным атомом с неспаренным электроном:
LOO. + АН => LOOH + А.
А.+ А. => А-А
где АН — антиоксидант, А-А его стабильный несвободнорадикальный продукт.
Множество антиоксидантов, вырабатываемых клетками и поглощаемых извне в качестве полностью, либо частично незаменимых соединений сдерживают клеточное «атомное оружие», препятствуя длительному существованию высоких концентраций АКР. Антиоксиданты — не просто набор веществ. Они способны восстанавливать друг друга и представляют собой антиоксидантные системы клеток.
Обычно выделяют три класса антиоксидантов :
Каталаза и глютатионпероксидаза — это энзимы предупредительного действия поскольку они восстанавливают АКР (перекись водорода), провоцирующую цепной свободно-радикальный процесс, до неактивного состояния.
Супероксиддисмутаза — фермент-прерыватель цепной реакции. Она превращает при наличии восстановительных эквивалентов, супероксидный анион, способный, формировать наиболее активные АКР, в менее активную перекись водорода, разрушаемую каталазой. Субстратами — прерывателями цепной реакции служат фенолы (например, токоферол) и амины (например, цистамин).
Третья разновидность антиоксидантов — хелатирующие агенты, способные связывать железо и другие металлы-катализаторы и разветвители цепных свободнорадикальных реакций (например, десферол и унитиол)
Все упомянутые энзимы и их изоэнзимы являются металлоферментами. В состав их активных центров входят микроэлементы.|Глутатионпероксидаза и фосфолипид-глутатионпероксидаза - селеносодержащие ферменты. Различные тканевые изоферменты супероксиддисмутазы содержат цинк, или марганец и медь. Митохондриальная изоформа использует марганец, а цитозольные — цинк и медь.Калалаза является пероксисомальным железо-зависимым металлоферментом.
Главные антиоксидантные субстраты клеток — это тиоловые соединения.К ним относятся глютатион, циствин, Д-пеницилламин. Глютатион — важнейший компонент антиоксидантных систем печени, сердца, мозга, легких и клеток крови.Глютатион обладает радиопротекторными свойствами.
Другая группа веществ, используемых клетками нашего организма для защиты от окислительного стресса — это витамины.Особенно тесная взаимозависимость существует между селеном и витамином Е, которые оба служат для инактивации липоперекисей. Витамин Е является сильнейшим антиоксидантом, так как ловит свободный электрон и не участвует в дальнейшей цепи. Протективное действие токоферола особенно выражено в отношении клеточных мембран. Активность токоферолов восстанавливается витамином С, как и активность системы глютатиона.
Таким образом, в системе глутатиона взаимодействуют витамины, микроэлементы и серосодержащие аминокислоты. Упомянутые витамины и микроэлементы,а также полифенолы (биофлавоноиды),липоевая кислота и каротин действуют в комплексе и составляют антиокислительный резерв клеток, определяющий их резистентность к свободно радикальному повреждению.
Многие пищевые продукты содержат значительные количества этих ингредиентов и способны насыщать ими организм.Поэтому, питание, оптимально обеспечивающее потребности клеток в антиоксидантах, является в настоящее время предметом наиболее интенсивных разработок в диетологии.
Особую роль в антиоксидантной защите играет трансферрин — отрицательный глобулин острой фазы, содержание которого в крови при воспалениях и инфекциях снижается. Он захватывает трехвалентное железо и может переносить его в клетки.
Антиоксидантная недостаточность может быть обусловлена наследственными и приобретенными нарушениями синтеза антиоксидантных ферментов (супероксиддисмутазы, каталазы, глутатионпероксидазы, глутатионредуктазы); дефицитом железа,меди,селена,необходимых для функционирования этих ферментов; гиповитаминозами Е,С; нарушениями пентозного цикла и цикла Кребса ,в реакциях которых образуются НАДФН и НАДН,обеспечивающие восстановление истинных и вспомогательных антиоксидантов и, наконец, действием детергентов, вследствие чего нарушается строение липидного бислоя мембран и открывается доступ свободных радикалов к обычно скрытым в гидрофобном слое ненасыщенным жирным кислотам. Независимо от механизма активации ПОЛ в клетке развиваются тяжелые изменения, связанные с нарушениями барьерной и матричной функций клеточных мембран.
2. Активация мембранных фосфолипаз. В патогенезе повреждения клетки важное значение имеет чрезмерная активация фосфолипазы А2 - фермента, осуществляющего гидролитическое отщепление ненасыщенной жирной кислоты - одного из двух гидрофобных хвостов молекулы фосфолипида.Освободившиеся под действием фосфолипазы А2 ненасыщенные жирные кислоты (арахидоновая, пентаноевая и др.) расходуются на образование физиологически активных соединений - простагландинов и лейкотриенов.
Оставшаяся часть молекулы фосфолипида (лизофосфолипид) имеет лишь один жирнокислотный «хвост», вследствие чего обладает способностью к мицеллообразованию и является очень сильным детергентом. С детергентным действием лизофосфолипидов и связано повреждение клеточных мембран в условиях чрезмерной активации фосфолипазы А2. Основным фактором, вызывающим такую активацию, является высокая концентрация ионов Са2+ в цитоплазме клетки.
3. Детергептное действие избытка свободных жирных кислот. Свободные жирные кислоты в больших концентрациях, так же как и лизофосфолипиды, оказывают детергентное действие и вызывают нарушение липидного бислоя мембран. Можно выделить четыре основных механизма повышения содержания свободных жирных кислот в клетке:
I) усиленное поступление свободных жирных кислотв клетку при гиперлипоацидемии (повышении концентрации свободных жирных кислот в крови), что наблюдается при активациилиполиза в жировой ткани, в частности, при стрессе, сахарном диабете;
2) усиленное освобождение свободных жирных кислот в лизосомах из триглицеридной части липопротеидов, поступающих в клетку, что имеет место в условиях гиперлипопротеинемий, сопровождающих развитие атеросклероза;
3) усиленное освобождение свободных жирных кислот из фосфолипидов мембран под действием уже упоминавшихся мембранных фосфолипаз;
4) нарушение использования клеткой свободных жирных кислот в качестве источника энергии, что отмечается при уменьшении активности ферментов бетта-окисления и цикла Кребса, а также при гипоксии.
Для того чтобы предотвратить повреждающее действие избытка жирных кислот, клетка располагает системой ферментов, которые переводят свободные жирные кислоты в триглицериды. При этом наблюдается не свойственное в норме отложение последних в клетке в виде жировых капель, т.е. возникает жировая дистрофия клетки.
Описанные выше липидные механизмы повреждения приводят к нарушению двух основных функций липидного бислоя клеточных мембран: барьерной и матричной. В основе нарушения барьерной функции мембран лежат два основных механизма: ионофорный и механизм электрического пробоя.
Первый из них обусловлен появлением в клетке веществ, обладающих свойствами ионофоров, т.е. соединений, способных облегчать диффузию ионов через мембрану благодаря образованию проходимых через ее слои комплексов иона и ионофора. В процессе активации перскисного окисления липидов среди промежуточных продуктов его реакций появляются вещества - ионофоры по отношению к ионам кальция и водорода, в результате чего повышается проницаемость клеточных мембран для указанных ионов.
Второй механизм («самопробой») реализуется за счет существующей на многих мембранах (плазматической, внутренней митохондриальной) разности потенциалов. В результате появления гидрофильных продуктов перекисного окисления липидов, а также вследствие детергентного действия лизофосфолипидов и избытка свободных жирных кислот нарушаются электроизолирующие свойства гидрофобного слоя клеточных мембран, уменьшается их электрическая стабильность, что приводит к электрическому пробою мембраны, т.е. к электромеханическому ее разрыву с образованием новых трансмембранных каналов ионной проводимости.
Сущность матричной функции липидного бислоя мембран состоит в том, что в нем вмонтированы мембранные ферменты и некоторые специализированные белки. В процессе перекисного окисления липидов нарушается активность мембранных ферментов в связи с изменением их липидного микроокружения, во многом определяющего свойства белковых молекул. Кроме того, в ходе реакций ПОЛ может произойти образование «сшивок» между молекулами белков и фосфолипидов, а также окисление сульфгидрильных групп активных центров, что приводит к необратимой инактивации ферментов.
Кальциевые механизмы. Целый ряд важных патогенетических механизмов повреждения клетки обусловлен повышением концентрации ионов кальция в ее цитоплазме. В основе такого повышения могут лежать 2 механизма:
- избыточное поступление ионов Са2+ в цитоплазму;
- нарушение удаления ионов Са2+ из цитоплазмы.
Избыточное поступление ионизированного кальция в цитоплазму может осуществляться через неповрежденную плазматическую мембрану в случае повышения градиента его концентрации, например при гиперкальциемии. Однако гораздо чаще поступление кальция в цитоплазму усиливается в результате нарушения барьерной функции мембран, как это имеет место в условиях активации уже рассмотренных липидных механизмов повреждения клетки.
Удаление ионов Са2+ из цитоплазмы нарушается вследствие недостаточности трех основных кальцийтранспортируюших систем клетки:
1) Са2+ -насосов плазматической мембраны и эндоплазматическо-го ретикулума;
2) Nа+-Са2+ -обменного механизма;
3) Са2+ -аккумулируюшей функции митохондрий.
Нарушение функционирования Са2+ -насосов может быть связано с наследственно обусловленными и приобретенными дефектами белковых компонентов Са2+ -насосов, а также с уменьшением в клетке концентрации АТФ, необходимой для осуществления процессов активного транспорта. Дефицит АТФ в клетке, в свою очередь, закономерно возникает в условиях нарушения энергетического обмена: при недостаточности энергетических источников в клетке, гипоксии, уменьшении активности ферментов гликолиза и цикла Кребса, угнетении процессов клеточного дыхания и окислительного фосфорилирования. Nа+-Са2+ -обменный механизм удаления ионизированного кальция из цитоплазмы обеспечивается энергией градиента концентраций ионов Na+ по обе стороны плазматической мембраны. Поэтому основной причиной нарушения Na+- Са2+-обмена является уменьшение указанного градиента, что происходит в условиях нарушения функции Nа+-К+-насоса, создающего этот градиент.
Са2+ -аккумулирующая функция митохондрий является одним из альтернативных путей использования энергии транспорта электронов по дыхательной цепи, когда освобождающаяся энергия идет не на синтез АТФ, а на транспорт ионов Са2+ из цитоплазмы в митохондрии против концентрационного градиента. С учетом этого Са2+ -аккумулирующая функция митохондрий угнетается во всех случаях нарушения процессов транспорта электронов по дыхательной цепи.
Стойкое повышение содержания ионов Са2+ в цитоплазме вызывает ряд важных последствий:
1) нарушение специфических функций клетки, в осуществлении которых принимают участие ионы Са2+ ; примером является развитие контрактуры миофибрилл мышечных клеток. При этом утрачивается способность таких клеток к расслаблению, а пересокращенные миофибриллы подвергаются разрушению под действием активированных избытком кальция протеолитичсских ферментов;
2) активация фосфолипазы А2 (см. выше);
3) разобщение окисления и фосфорилирования.
В условиях повышения концентрации ионов Са2+ в цитоплазме данный эффект возникает в результате использования энергии клеточного дыхания не на синтез АТФ, а на транспорт кальция из цитоплазмы в митохондрии. Кроме того, важное значение имеет повышение проницаемости внутренней митохондриальной мембраны под влиянием фосфолипазы А2, активированной избытком ионов кальция.
Электролитно-осмотические механизмы. Электролитно-осмотические механизмы повреждения клетки обусловлены сдвигами в содержании главных клеточных катионов: Na+ и К+.Выравнивание концентраций этих ионов по обе стороны плазматической мембраны приводит к увеличению внутриклеточной концентрации ионов Na+ и уменьшению концентрации ионов К+ в клетке. В основе указанных сдвигов могут лежать два механизма, обеспечивающих поддержание концентрационных градиентов указанных ионов:
1) усиленная диффузия ионов через плазматическую мембрану;
2) нарушение механизмов активного транспорта Na+ и К+.
Усиление диффузии ионов Na+ в клетку и выход ионов К+ из клетки могут происходить как через неповрежденную плазматическую мембрану в условиях общих нарушений водно-электролитного обмена в организме (гипернатриемия, гипокалиемия), так и при нарушении барьерной функции плазматической мембраны. Перемещение ионов Na+ и К+ в этих случаях осуществляется через имеющиеся и вновь образовавшиеся каналы ионной проводимости за счет существующих концентрационного и электрического градиентов.
Основу нарушений активного транспорта ионов Na+ и К+через плазматическую мембрану составляет недостаточность Na+ - К+-насосов. Главной причиной нарушений работы этих механизмов является дефицит АТФ, за счет энергии которой достигается перемещение ионов Na+ и К+ против электрохимического градиента. Поскольку основным источником АТФ для Na+ — К+-насосов является гликолиз, то нарушение этого процесса при недостаточном поступлении глюкозы в клетку или уменьшении активности соответствующих ферментов будет приводить к рассматриваемым здесь электролитным сдвигам. Причиной нарушения функции Na+ — К+-насосов может быть также изменение свойств липидного бислоя наружной клеточной мембраны и, в частности, увеличение содержания в нем холестерина, что наблюдается при атеросклерозе. Угнетение работы Na+ — К+-насосов вызывается и целой группой специфических ингибиторов Na+ — К+-АТФазы (строфантин, оубаин и др.).
Сдвиги электролитного состава клетки в процессе се повреждения проявляются развитием ряда изменений, среди которых наиболее важными являются:
I) потеря клеткой электрического мембранного потенциала (потенциала покоя);
2) отек клетки и
3) осмотическое растяжение мембран, приводящее к нарушению их барьерной функции.
Ацидотические механизмы. В основе этой группы механизмов повреждения лежит увеличение концентрации ионов водорода в клетке, т.е. внутриклеточный ацидоз.
Развитие внутриклеточного ацидоза может быть обусловлено следующими механизмами:
1) избыточным поступлением ионов водорода в клетку из внеклеточной среды, что наблюдается в условиях общих нарушений кислотно-основного гомеостаза в организме — при декомпенсированных газовом и негазовом ацидозе;
2) избыточным образованием кислых продуктов в самой клетке, что отмечается при активации гликолиза (молочная кислота), нарушениях цикла Кребса (три- и дикарбоновые кислоты), гидролитическом расщеплении фосфолипидов клеточных мембран (жирные кислоты, фосфорная кислота), усиленном распаде свободных нуклеотидов (фосфорная кислота);
3) нарушением связывания ионов водорода в результате недостаточности буферных систем клетки;
4) нарушением выведения ионов водорода из клетки при недостаточности Na+ —Н+-обменного механизма цитоплазматической мембраны, а также в условиях расстройства местного кровообращения в тканях.
Повышение внутриклеточной концентрации ионов водорода приводит к развитию ряда изменений:
1) нарушению функциональных свойств белков (ферментов, сократительных и др.) в результате изменений конформации их молекул;
2) активации лизосомальных гидролитических ферментов;
3) повышению проницаемости клеточных мембран вследствие изменения жидкостного состояния мембранных липидов.
Протеиновые механизмы включают в себя:
1) ингибирование ферментов (обратимое и необратимое);
2) денатурацию, т.е. нарушение нативного строения белковых молекул в результате изменений вторичной и третичной структуры белка, обусловленных разрывом нековалентных связей;
3) протеолиз, осуществляющийся под действием лизосомальных гидролитических ферментов (катепсинов) и Са2+ -активируемых протеаз.
Основу нуклеиновых механизмов повреждения клеток составляют нарушения 3 процессов: репликации ДНК, транскрипции и трансляции.
На субклеточном уровне реализация рассмотренных выше молекулярных
механизмов повреждения клетки приводит к нарушению строения и функции отдельных ее органелл.
Повреждения клеточного ядра
Повреждение ядерной ДНК вызывает несколько типовых защитных реакций.В поврежденных клеточных ядрах происходит включение целого ряда аварийных генетических программ, считывание которых в нормальных условиях отсутствует или минимально.
К ним относятся:
-Гены белков теплового шока (БТШ);
-Немедленные гены предраннего ответа;
-Антионкогены;
-Гены-регуляторы программированой клеточной гибели;
-Ген маркера стареющих и поврежденных клеток (АСК).
Работа каждой из этих генетических систем сочетает защитные и вторичные повреждающие эффекты.
Белки теплового шока
Белки теплового шока (БТШ) — многофункциональные клеточные регуляторы.
Впервые они были обнаружены в клетках дрозофил, подвергавшихся тепловому воздействию.Экспрессия данных белков специфична не только для тепловой травмы, она может быть индуцирована различными воздействиями (воспаление, инфекция, гипоксия, химические повреждения клеток тяжелыми металлами, мочевиной, перекисью водорода, мышьяком и этиловым спиртом).
Вместе с тем, повышенная экспрессия БТШ увеличивает и термпературную устойчивость клеток.
Считается, что БТШ могут представлять собой систему белковых клеточных детергентов и регуляторов ограниченного протеолиза. В этом качестве они способны поддерживать нативную конформацию синтезируемых в клетке белков, предохранять их от денатурации и солюбилизировать белки, которые при клеточном стрессе утрачивают свою растворимость, либо способствовать протеолизу денатурированных белков.
БТШ синтезируются в небольших количествах и в норме и могут, в частности, принимать участие в регуляции клеточной пролиферации, обеспечивая конденсацию хромосом при митозе.
БТШ — элементы наиболее древних, неспецифических механизмов клеточной реактивности. БТШ способны оказывать цитопротекторное действие при повреждении, предохраняя клетку и от апоптоза и, в определенной степени, на ранних стадиях (до развития тяжелой гипоксии)— также и от некроза.
Работа системы БТШ способна как предохранять клетки от преждевременной запрограммированной гибели (БТШ-70), так и индуцировать ее (убиквитины). Повреждение способно индуцировать программы, устраняющие сами поврежденные клетки.
Немедленные гены предранней реакции (НГПР)
При повреждении клеток различных органов и тканей, независимо от причин этого повреждения, происходит очень быстраят неспецифическая активация ряда генов, которые были условно объединены под названием «немедленные гены предранней реакции».
Считается, что НГПР способны активировать клеточную пролиферацию, в том случае, если их считывание в клетках происходит на фоне достаточного количества ростовых сигналов.Таким образом, работа НГПР может рассматриваться, как подготовка к репаративным процессам при повреждении тканей.
Вместе с тем, продукты тех же самых НГПР могут запустить процесс запрограммированной клеточной гибели, если ростостимулирующий фон недостаточен.
Антионкогены
Продукты антионкогенов это регуляторы генной стабильности, останавливающие митотический цикл в мутировавших клетках . Остановка цикла дает мутантной клетке время для срабатывания репаразных механизмов. Если мутация не репарируется, продолжение экспрессии антионкогенов ведет к запуску программы апоптоза клеток с поврежденной ДНК.
Активация генов, контролирующих антигены- маркеры стареющих и повреждённых клеток.
В начале 80-х годов Маргарет Кей и соавторы обнаружили, что один из белков поверхностной мембраны красных кровяных телец, движущийся при электрофорезе в составе третьей полосы и выполняющий функции ионного канала, практически отсутствует или скрыт поверхностными гликопротеидами мембраны в молодых клетках и, наоборот, активно экспрессируется в мембране старых и поврежденных эритроцитов.
Впоследствии оказалось, что данная молекула является маркером, появляющимся на мембране после истечения онтогенетически отпущенного эритроцитам срока в 120 дней — то есть, опознавательным знаком стареющих клеток.
Таким образом, маркер или антиген стареющих клеток оказался частью фундаментального механизма запрограммированного устранения из организма тех клеточных элементов, которые исчерпали вследствие изнашивания или повреждений свой генетический ресурс.
Повреждение плазмолеммы
Поскольку большинство органелл относится к мембранным образованиям, то универсальным механизмом повреждения субклеточных структур является нарушение проницаемости и целостности клеточных мембран. Можно выделить 5 основных механизмов повреждения мембран: 1) перекисное окисление липидов; 2) активация фосфолипаз; 3) осмотическое растяжение мембран; 4) адсорбция белков на мембране (например, комплексов антиген-антитело); 5) изменение фазового состояния мембранных липидов (ацидоз, изменения температуры).
При повреждении создается цепь последствий первичной альтерации плазмолеммы, которая включает:
1. Недостаточность натрий-калиевого насоса и функций ионных каналов;
2. Утрату физиологических трансмембранных ионных градиентов;
3. Избыточный входной ток натрия и воды в клетку;
4. Набухание клетки;
5. Избыточный входной ток кальция в клетку;
6. Активацию мембранных фосфолипаз;
7. Освобождение и превращения арахидоновой кислоты;
8. Нарушение локальной микроциркуляции;
9. Появление вокруг клетки липидных медиаторов воспаления.
Повреждение цитоплазматическоп мембраны может проявляться:
- нарушениями ее барьерной функции;
- расстройствами систем активного транспорта веществ (Na+ — К+- и Са2+ -насосов, Na+ — Са2+ -и Na+ -H+-обменных механизмов и др.);
- изменениями белков, образующих специфические каналы ионной проводимости; повреждением рецепторных макромолекул, воспринимающих внешние регуляторные сигналы;
- нарушениями белковых комплексов, осуществляющих межклеточные взаимодействия;
-изменениями гликопротеидов, определяющих антигенность клетки.
Повреждение цитоскелета
Цитоскелет — это система микротрубочек (диаметром 20-25 нм), промежуточных филаментов (диаметром 15 нм), а также тонких актиновых (6-8 нм) и толстых миозиновых (15 нм) филаментов.Элементы цитоскелета способны к самосборке и обратимой полимеризации и состоят из глобулярных и фибриллярных белков: тубулина, динеина и динамина (микротрубочки), актина, миозина (микрофиламенты), виментина, кератинов, десмина и других (промежуточные филаменты).
Цитоскелет ответственен за поддержание формы клеток и за все способы их движения (деятельность ресничек, жгутиков, ундулирующих мембран и псевдоподий). Он же обеспечивает внутриклеточное перемещение органоидов и включений (например, гранул при дегрануляции тучных клеток или хромосом при митозе). Прикрепление клеток к межклеточному веществу и друг к другу, передача сигнала от рецепторов плазматической мембраны внутрь клетки также проходит при участии этой внутриклеточной опорно-двигательной системы.
Фагоцитоз, пиноцитоз, хемотаксис также всецело связаны с функцией цитоскелета.
При энергодефиците в клетке работа цитоскелета существенно нарушается. Например, сахарный диабет сопровождается «синдромом ленивых фагоцитов», при котором замедлен хемотаксис и снижена фагоцитарная активность этих клеток.
При вирусном поражении клеток зачастую вирусы взаимодействуют именно со структурами цитоскелета.Так как вирусы содержат специфические рецепторы, распознающие белки цитоскелета, иммунный ответ против вирусных антигенов может приводить к появлению аутоантител, копирующих способность вируса связывать элементы цитоскелета. Поэтому многие вирусиндуцированные процессы продолжаются как аутоиммунные и сопровождаются появлением антител, поражающих цитоскелет.Характерным примером служит агрессивный хронический гепатит. Данное аутоиммунное заболевание провоцируется вирусной инфекцией, в частности, вирусом гепатита С. Однако, его персистирующее волнообразное течение обусловлено появлением аутоантител против белков цитоскелета — актина и кератина.
Аутоантитела к элементам цитоскелета сперматозоидов вызывают снижение их подвижности и могут быть причиной бесплодия. Показано, что они могут присутствовать в цервикальной слизи у женщин при бесплодном браке.
Существуют токсины, избирательно поражающие цитоскелет. Цитохалазины вызывают деполимеризацию, а токсин бледной поганки фаллоидин — стойкую полимеризацию актина. Колхицин блокирует полимеризацию, а такбол — деполимеризацию микротрубочек.
Важным аспектом повреждения цитоскелета считается его трансформация в злокачественных клетках, под влиянием онкобелков. Один из онкобелков, вырабатываемых злокачественными клетками, способен вызывать необратимое фосфорилирование цитоскелетного белка винкулина, участвующего в прикреплении клеток к межклеточному веществу. Из-за этого злокачественные клетки легко отсоединяются от межклеточного вещества и покидают свои места. Это считается важным механизмом, составляющим основу их способности расселяться по организму —метастазировать.
Повреждения внутриклеточных мембран
Большая часть внутриклеточных мембран принадлежит к эндоплазматическому реткулуму. Различные факторы, включая отравления алкоголем, ДДТ, четыреххлористым углеродом, инфекцию, ионизирующее излучение, гипоксию вызывают набухание ретикулума, изменение его конфигурации появление крупных вакуолей и петель или распад на мелкие гранулы.При повреждении клеток в результате действия многих различных причин наступает такое типовое последствие, как отсоединение рибосом от мембран шероховатого эндоплазматического ретикулума ( ШЭР).Транспорт вновь образованных белков нарушается и избыток их оказывается в цитоплазме, где они денатурируются по мере нарастания клеточной гипоксии и ацидоза и формируют картину «мутного набухания» или начальные стадии так называемой «зернистой дистрофии».
При повреждении клетки затрагивается и гладкий эндоплазматический ретикулум (ГЭР).Мембраны ГЭР являются отсеком клетки, содержащим систему мощных оксидаз со смешанной функцией. Эти ферменты содержат цитохром Р450 и являются железозависимыми. Они представляют собой дезинтоксикаци-онную систему клетки. Оксидазы со смешанной функцией принимают участие в биотрансформации эндогенных соединений, в частности, инактивации сигнальных молекул, например, стероидных гормонов и обезвреживании билирубина, детоксикации ксенобиотиков, например, многих лекарств.
Избыточная акгивация оксидаз ГЭР приводит к повышению продукции клеткой окиси азота. Избыток N0 ведет к ряду неблагоприятных результатов.
При образовании окиси азота формируются, в качестве сопутствующих продуктов, свободные кислородные радикалы. Они способны причинять вторичные повреждения клеточным мембранам, нуклеиновым кислотам и другим компонентам клеток.
Повреждение пластинчатого комплекса
Важной составной частью исполнительного аппарата клетки служит пластинчатый комплекс (комплекс Гольджи, описанный К. Гольджи в 1898 г.). Этот органоид также представляет собой мембранную структуру, состоящую из стопок, содержащих каждая по 5-6 уплощенных ограниченных мембранами цистерн. В комплекс Гольджи поступают из ШЭР в специальных везикулах синтезированные там белки, снабженные углеводными остатками и предназначенные для распределения внутри клетки или экспортных нужд.Ферменты комплекса подвергают белки гликозилированию и фосфорилированию.
Аппарат Гольджи поражается при ряде приобретенных и наследственных расстройств. Так как он является местом образования и наполнения лизосом, часто его повреждение ассоциируется с лизосомальной патологией.
Повреждение лизосом и пероксисом
При повреждении клеток лизосомы участвуют в процессе аутофагии, захватывая и переваривая своими гидролазами в составе аутофагосом остатки разрушающихся органоидов.
Процесс удержания ферментов в лизосоме еще не ясен. Ведь ферменты весьма агрессивны. Ферменты лизосом могут действовать внутри клетки, расщепляя, растворяя внутриклеточные структуры. Они в фаголизосомах разрушают чужеродные и собственные стареющие клетки, то есть лизосомы участвуют в механизме разрушения собственных отживших клеток.
Лизосомальная мембрана весьма стабильна и не повреждается даже при наличии в лизосоме агрессивных энзимов, радикалов и кислой среды (рН в работающей лизосоме достигает 1.5-2 единиц). При обратимых повреждениях клетки, даже если они глубоки, пероксисомы и лизосомы не дают утечки агрессивного содержимого, несмотря на то, что в этих условиях может наблюдаться их значительное набухание.
Гипоксия, ацидоз, радиация, голодание, избыток и недостаток витаминов А, Е и Д, ряд ядов (например, эндотоксины бактерий тифо-паратифозной группы) и многие другие факторы увеличивают проницаемость лизосомальных мембран. При глубоком необратимом повреждении, некробиотические изменения в клетке всегда приводят к разрушению лизосом, что вызывает аутолиз клетки, неизбежный при некрозе. Выход ферментов за пределы клетки приводит к активации функциональных биохимических систем ограниченного протеолиза, липолиза и др. с образованием биологически активных веществ.
При некоторых наследственных энзимопатиях лизосомы неспособны переварить те или иные субстраты (гликозаминогликаны, липиды или их комплексы, гликоген и др.). Подобные болезни характеризуются как тезаурисмозы или «болезни накопления», поскольку непереваренные субстраты образуют в лизосомах стойкие включения.
К лизосомальным болезням относятся болезни накопления липидов и гликолипидов (например, наследственные ганглиозидозы — болезнь Тея-Сакса и болезнь Зандхоффа, наследственный галактоцереброзидоз — болезнь Краббе, наследственный сфинголипидоз — болезнь Ниманна-Пика), мукополисахаридозы (например, болезни Сан-Филипио А. В, С и О — гепарансульфатозы, болезнь Моркио —кератансульфатоз, болезнь Марото-Лами — дерматансульфатоз), гликогеноз 2 типа (болезнь Помпе или дефицит кислой мальтазы).
Клинические симптомы, как правило, касаются, главным образом, тех тканей, где в норме должен идти наиболее интенсивный лизосомальный гидролиз того или иного субстрата.Общей чертой таких заболеваний нередко является нарушение психомоторного развития и иммунитета, потому что среди загруженных субстратами клеток оказываются нейроны и макрофаги.
Поражение ЦНС наиболее характерно для липидозов и глико (муко) липидозов, так как компоненты миелина и клеточных рецепторов — цереброзиды, сфинголипиды и их комплексы с углеводами — наиболее широко представлены в нервной ткани.
Пероксисомы выполняют в клетке ряд важных функций, включая образование и инактивацию перекиси водорода, окисление жирных кислот до ацетилкоэнзима А, окисление мочевой кислоты.Наследственный дефект, связанный с отсутствием пероксисом, абсолютно смертелен и приводит к гибели новорожденных через несколько месяцев при явлениях иммунодефицита и гипоксии.
Пероксисомы обеспечивают кислородзависимый бактерицидный эффект при фагоцитозе. Во время повреждения клетки альтерация пероксисом способствует процессам образования свободных радикалов. Нарушение утилизации жирных кислот позволяет этим субстратам формировать в цитоплазме детергенты, что способствует омылению клетки и разрушению ее мембран.
Повреждение митохондрий
При многих клеточных повреждениях окисление в митохондриях тормозится.Если прекратится окисление в цикле трикарбоновых кислот, отсутствие возобновления протонового градиента приведет к прекращению выработки АТФ.Если в цепи биологического окисления образуются разрывы из-за нехватки каких-либо коферментов или ингибирования энзимов — это также остановит работу митохондриального генератора. В обоих случаях возникает невозможность утилизации кислорода, несмотря на его поставку — то есть тканевая гипоксия.
Разрывы в цепи биологического окисления могут быть вызваны авитаминозами по витаминам В, РР, Q, входящим в митохондриальные окислительно-восстановительные комплексы. К таким же последстиям приводит дефицит микроэлементов (в первую очередь, железа и меди). Не случайно, авитаминозы по витаминам-коферментам биоокисления и дефицит указанных микроэлементов имеют ряд общих симптомов, например, генерализованное поражение слизистых и кожи, эпителий которых является в норме высокоаэробной тканью.
Отравления мочевиной, фторотаном, сероводородом и сульфитами также протекают с ингибированием тканевого дыхания. Цианистый калий — эффективно блокирует систему цитохромов, вызывая картину острой тканевой гипоксии, прежде всего, в миокарде (что вызывает синдром стенокардии) и мозге (что проявляется потерей сознания и остановкой дыхания).
Одним из факторов, нарушающих нормальную работу митохондрий, может служить сам дефицит кислорода. Это происходит, если кислород не поступает в клетку в течение более или менее длительного времени (3-5 минут для нейронов, 20-60 минут для миокарда или много часов — для фибробластов). Так как нехватка кислорода ломает митохондрии, все виды гипоксии имеют парадоксальную и опасную тенденцию — переходить в тканевую форму.
При нарушении окисления в митохондриях в цитозоле клетки растет концентрадия ацетил-КоА, увеличивается синтез и количество триглицеридов (жировая инфильтрация клетки). Ацетил-КоА при его большой концентрации ингибирует образование ацильных эфиров СЖК, то есть включение СЖК в энергообразование.Избыток ацетил-КоА и промежуточные продукты недоокисления СЖК подавляют тканевое дыхание. Наиболее характерными проявлениями повреждения митохондрий являются эффект разобщения окисления и фосфорилирования и угнетение клеточного дыхания.
Основным источником АТФ при этом становится гликолитический путь окисления глюкозы в цитозоле. Он в 18 раз менее эффективен, чем ее митохондриальное окисление и не может в достаточной мере компенсировать дефицит макроэргов.
Активация гликолиза в последующем приводит к его торможению в результате накопления кислых продуктов гликолиза - молочной и пировиноградной кислот, ведущих к развитию внутриклеточного ацидоза. В условиях ацидоза снижается активность ряда ферментов гликолиза: фосфофруктокиназы, фосфатдегидрогеназы, гексокиназы, фосфорилазы.
Расстройства транспорта энергии.Заключённая в макроэргических связях энергия АТФ в норме доставляется от мест ресинтеза — митохондрий и цитозоля — к эффекторным структурам (миофибриллам, мембранным ионным насосам и др.) с помощью АДФ‑АТФ‑транслоказы (адениннуклеотидилтрансферазы) и КФК( креатинфосфокиназа).
Адениннуклеотидилтрансфераза обеспечивает транспорт энергии макроэргической фосфатной связи АТФ из матрикса митохондрий через их внутреннюю мембрану, а КФК переносит её далее на креатин с образованием креатинфосфата, который поступает в цитозоль. КФК эффекторных клеточных структур транспортирует фосфатную группу креатинфосфата на АДФ с образованием АТФ, который и используется в процессах жизнедеятельности клетки.
Было отмечено, что при воздействиях, повреждающих энергетику клетки, в первую очередь снижается содержание креатининфосфата. Так при 30 сек ишемии миокардиоцита снижение концентрации ATФ составляет 18%, а креатининфосфата 56%. Последнее свидетельствует о важности нарушения транспорта энергии при повреждении энергетики клетки.
Нарушение энергообразования и транспорта энергии в клетке приводит к торможению всех энергозавиcимых процессов,страдают, в частности, ферментные системы, регулирующие ионный баланс клетки: Са2+-зависимая АТФаза,
Мg2+-зависимая АТФаза,
К+- зависимая АТФаза,
Nа+- зависимая АТФаза.
Эти ферменты называют мембранными насосами, которые сдерживают распределение ионов по градиенту концентрации, т.е. переход Са2+, Nа+ и Мg2+ в клетку и К+ из клетки, и выводят Nа+, Мg2+, Са2+ из клетки в окружающую среду, и К+ в клетку против градиента концентрации.
При нарушении действия этих систем возникает ионный дисбаланс и гибель клетки.
Мутации ядерных и местных генов, контролирующих митохондриальные белки, как правило, не смертельны для клеток, которые способны выживать, переходя к анаэробному метаболизму. Однако, в тканях с высокой потребностью в кислороде (мышечная, нервная) при этом возникают клинически значимые нарушения, кроме того, вследствие усиленного гликолиза формируется метаболический ацидоз. Эти нарушения описаны у человека, как группа «митохондриальных болезней».
Характерные повреждения митохондрий при этих болезнях придают мышечным волокнам изорванный вид. Органоиды увеличены, содержат кристаллические включения и кристы искаженной формы. При специальной гистологической окраске скопления митохондрий приобретают красный цвет, вследствие чего мышечные волокна при митохондриальных болезнях описывают в патологической литературе, как «красные изорванные волокна». Характерно компенсаторое увеличение количества митохондрий в клетках.Как правило, наследственные митохондриопатии выражаются в поражении головного мозга и мышц.
Роль митохондрий в процессе повреждения клеток огромна. Их деструкция является решающим событием при смерти клетки от гипоксии.
