- •1.Гидрофизика пәні және оның мақсаты
- •2. Гидрофизиканың дамуының қысқаша тарихы. Гидрофизиканың басқа аралас пәндермен байланыстылығы
- •3. Судың физикалық қасиеттері, құрылымының ерекшеліктері
- •4. Судың аномальдік қасиеттері
- •5. Судың бір күйден екінші күйге ауысу диаграммасы
- •6. Қардың сулық қасиеттері. Қар, мұз альбедосы
- •7. Мұздың физикалық және механикалық қасиеттері
- •8. Қардың физикалық қасиеттері
- •9. Судың араласу түрлері: конвективтік және динамикалық араласу
- •10. Су қоймаларындағы ағын және циркуляция
- •11. Су толқындары, олардың түрлері. Су толқының негізгі параметрлері, анықтау жолдары
- •12. Су объектілеріндегі су массалары. Су массаларының тұрақтылығы және типтері
- •13. Конвективтік жылу алмасу. Ньютон заңы
- •14. Жылу қозғалысының негізгі заңдары. Жылу қозғалысының жылу өткізгіштік жолмен атқарылуы
- •15. Күн радиациясының суға енуі және жұтылуы, Ламберт формуласы
- •16. Температуралық аймақ, температура градиенты, Фурье заңы
- •17. Өзендер мен көлдердегі су температурасының жылдық өзгерісі
- •18. Су қоймасының жылу балансы теңдеуі, құрамдас бөліктері
- •19. Көлдердегі жылу қорын есептеу. Ф.Форель, Хальбфасс, с.Д. Муравейский әдістері.
- •20. Су температурасының маусымдық өзгерісі. Көктемгі жылыну, жаздық қызу, күзгі салқындау және қыстық салқындау кезеңдері
- •21. Су бетіне түсетін жиынтық күн радиациясын есептеу. Су бетінің сәулеленуі (излучение). Стефан-Больцман заңы.
- •22. Жылу балансы теңдеуін құрайтын негізгі элементтерінің атқаратын рөлі және оларды есептеу әдістері. Су қоймасының жылу балансы теңдеуі
- •23. Буланудың физикалық мәні. Су бетінен буланудың негізгі факторлары. Су бетінен булануды бақылау жүргізу. Су әоймасы бетiнен булануды есептеу
- •1. Жалпы мәліметтер
- •24. Су бетіне түсетін жиынтық күн радиациясы, Савинов-Онгстрем, Кузьмин формулалары.
- •25. Аспаптар арқылы бақылау жүргізілмеген жағдайда су бетінен булануды есептеу әдістері
- •26. Булануды есептеудегі су балансы (теңдестігі) әдісі
- •27. Булануды есептеудегі жылу балансы (теңдестігі) әдісі
- •28. Булануды есептеудегі эмпирикалық формулалар
- •29. Булануды есептеудегі турбуленттік диффузия әдісі
- •30. Су объектілерінің салқындауы және мұздануы. Мұз қабатының пайда болу типтері
- •31. Мұз жамылғысының пайда болу жағдайлары, олардың типтері. Мұз бетінен булану және оларды есептеу әдістері
- •32. Мұз қалыңдығының өсу шарттары және мұз қалыңдығының өсуін есептеу әдістері
- •33. Су нысандарының мұз қату кезеңіндегі мұздық-термикалық режимі
- •34. Су қоймаларындағы судың араласу шарттары
- •35. Қар қабатындағы физикалық процесстер: режеляция, рекристаллизация, возгонка, сублимация
- •36. Конвекция және булану арқылы жылу алмасуды анықтайтын негізгі формулалар
- •38. Ағындының гидродинамикалық жылынуы. Су қоймасындағы жылу қорының өзгеруі
- •39. Су түбімен жылу алмасу.
- •40. Су массаларының тұрақтылығы және типтері
34. Су қоймаларындағы судың араласу шарттары
Судың араласуы деп су қоймасының жеке қабаттарының немесе олардың жекелеген көлемдерінің өзра араласуын айтады. Сыртқы күштердің әрекет етуі судың бірқатар массаларымен бірге олардың ішіндегі қоспалардың, химиялық еріген заттардың, жүзбе бөлшек-тердің газдардың араласуын тудырады. Су қабаттарының қозғалысы нәтижесінде су қоймасының әр түрлі бөліктеріндегі су массалары араласып, олардың физикалық-географиялық және басқа сипаттамалары түзеледі. Судың араласуы молекулярлық және молярлық болуы мүмкін. Қозғалыссыз су массасы қабаттарының біркелкі жылынбауынан ерте жылынған қабаттар мен салқын қабаттар арасында су молекулаларының әр түрлі жылдамдықта хаосты қозғалысынан жоғары жылдамдықтағы су молекулалары салқын қабаттарға өтеді. Кинетикалық энергияның бір қабаттан екінші қабатқа өтуі бұл қабаттар аралығындағы температураны түзетеді. Әдетте судың молекулярлық араласуы сұйықтық ортаның қозғалыста болып келуінен су қоймалары режимінде маңызды рөл атқармайды. Ірі су массалары көлемдерінің қозғалысы нәтижесінде өзімен бірге жүзбе тасындыларды, еріген тұздарды, жылу қорын және т.с.с. араластыратын молярлық араласу су қоймаларында үлкен рөл атқарады. Молярлық араласу термикалық (конвективтік араласу) немесе динамикалық (еріксіз конвекция) себептерден туатын ретсіз, вихрлік (турбуленттік) қозғалыстар нәтижесінде жүреді. Конвективтік араласу. Конвективтік араласу (еркін конвекция) беттік су қабаттарының тығыздығын өсіретін су массасының салқындауы немесе жылынуы және басқа процестер кезінде пайда болатын су температурасының тұрақсыз стратификациясы жағдайында жүреді. мысалы Байкал көлінде мұндай араласу 200 – 300 м-ге жетеді. Динамикалық араласу. Динамикалық араласуда су ағысы және жел толқыны әсерінен су массасы вертикал және горизонталь бағытта араласады. Көлдерде тұрақты ағыстың болмайтындығынан динамикалық араласу көлдің жеке бөліктерінде, яғни өзендердің көлге құятын және одан ағып шығатын жерлерінде, сондай-ақ күшті жел тұрғанда судың қозғалысынан орын алады. Көлдердегі уақытша ағыс және судың қарқынды араласуы негізінен желдің әсер етуінен жүреді. Ағыс және циркуляция. Су қоймаларында көбінесе судың қозғалысы сыртқы күштің әсер етуінен (ағысы)орнайды. Көлдердегі ағыс пайда болу себептеріне байланысты гравитациялық және фрикциялық болып бөлінеді. Гравитациялық ағыс. Гравитациялық ағыс ауырлық күшінің горизонталь бағыттағыбөлігі (гидростатикалық қысымның горизонтальдік градиентінің күші деп аталатын)әсерінен пайда болады, сондықтан гравитациялық ағысты әдетте градиенттік ағыс деп атайды.Градиенттік ағыстың пайда болуын туғызатын жағдайларға су қоймасының бір бөлігіне келіп құятын саланы, су қоймасы бетіне жауатын жауын-шашынды, атмосфералық қысымның өзгеруін, судың толысуын және т.б. жатқызуға болады.Градиенттік ағыс пайда болу себебіне байланысты ағындылық (стоковые течения), ақпалық (сточные течения) және тығыздықтық болып ажыратылады. Ағындылық ағыс. Ағындылық ағыс су қоймасындағы судың көлемі өзгергенде (су жинау алабынан келіп түсетін сулар, көлден ағып шығатын өзен, су қоймасының бірбөлігіне мол жауған жауын шашын) пайда болады. Тығыздықтық ағыс.Тығыздықтық ағыс әр түрлі тығыздықтағы су массаларының қозғалысы нәтижесінде туындайды. Тығыздықтық ағысты туғызатын себептерге келесілер жатады:- көл қабатының біркелкі жылынбауы; - минералдануы әр түрлі сулардың қосылуы, әдетте өзендердің сағалық учаскелеріндебайқалады; - өзендердің жоғары минералданған су қоймаларына құюы; - лайлығы әр түрлі сулардың қосылуы; - су қоймаларына температурасы жоғары өнеркәсіптік ақаба сулардың құюы және т.б. Фрикциялық ағыс. Фрикциялық ағыс тығыздығы әр түрлі су қабаттарының арасындағыұйкеліс кұшінен туады (көбінесе желдің судың беткі қабатына тигізетін әсерінен). Желдің субетіне ұйкелісі және оның артқы жағынан қысым тудыруы желдік (дрейфтік) ағысты және су бетінде толқынның пайда болуынан су бөліктерінің күрделі траектория бойымен қозғалысын тудырады. В.К. Давыдов мәліметтері бойынша жылдамдығы 1,0-ден 4,2 м/с жел кезінде Онега көлінің беттік желдік ағысы 3-тен 18 см/с-ке дейін өзгерген. Г.Ю. Юнусовтың зерттеулері бойынша Балқаш көлінің бұғазында байқалған желқума (нагон) ағынының жылдамдығы 0,87 – 0,56 м/с-ке жеткен.
