
- •2.1.Предмет,задачи и методы физиологии. Физиология как теоретическая основа медицины,ее значение для подготовки врача.
- •2.2.Основные этапы развития физиологии. Роль отечественных и зарубежных физиологов.
- •2.3.Понятие о гомеостазе и гомеокинезе. Константы гемеостаза.
- •2.4.Общие принципы и уровни регуляции функций.
- •2.5.Понятие «здоровье» и «норма». Физиологические параметры как функциональные показатели здоровья.Пути сбережения здоровья и трудоспособности.
- •2.6.Клеточная мембрана,ее структура и функции.Ионная асимметрия.
- •2.7.Транспорт ионов и молекул через мембрану. Ионные каналы и насосы.
- •2.8.Мембранный потенциал покоя, его происхождение ихарактеристика. Роль Na –k насоса.
- •2.9. Локальные изменения мембранного потенциала.Критический уровень деполяризации.
- •2.10.Возбудимуе ткани,их физиологические свойства. Возбудимость,ее изменения и оценка.Действие постоянного тока навозбудимые ткани.
- •2.11.Потенциал действия ,его характеристика,фазы и ионный механизм формирования.
- •2.12.Условия генерации потенциала действия, кривая «сила-время». Понятие о хронаксии и реобазе.
- •2.13. Лабильность.
- •2.14.Структурно-функциональная классификация нервных волокон.
- •2.15.Механизм и законы проведения возбуждения по нервным волокнам.
- •2.16. Аксонный транспорт, его виды и роль.
- •2.17.Строение, виды и функции синапсов.Передача возбуждения и ее блокада на примере нервно-мышечного синапса.Потенциал концевой пластинки.
- •2.18.Типы мышечной ткани,их структурно-функциональная характеристика.
- •2.19.Ультраструктура мышечного волокна.Двигательные единицы.Функциональная дифференцировка двигательных единиц.
- •2.20.Механизм сокращения и расслабления скелетных мышц.Электромеханическая сопряжение возбуждения и сокращения.Особенности сокращения гладких мышц.
- •2.21.Типы мышечного сокрощения: одиночное и тетаническое;изометрическое, изотоническое,ауксотоническое.
- •2.22.Работа и сила мышц.Зависимость силы сокращения от длины мышечного волокна.Оптимум и пессимум силы и частоты стимуляции.Правило средних нагрузок.
- •2.23.Уровни и механизмы регуляции функций,их взаимодействие.Роль обратной связи.
- •2.24.Понятие о функциональных системах и контурах регуляции.
- •2.25.Нейрон как структурно – функциональная единица цнс, его интегративная функция. Классификация нейронов. Нейроглия ее функции.
- •2.26.Нервные центры, их свойства. Суммация возбуждения в центральных синапсах.
- •2.27.Рефлекторный принцип нервной регуляции функций. Структурно-функциональная характеристика звеньев рефлекторной дуги. Рецептивное поле рефлекса. Классификация рефлекторных дуг.
- •2.28.Принципы координационной деятельности цнс.
- •2.29.Методы исследования цнс.
- •2.30.Процессы возбуждения и торможения в цнс. Возбуждающие и тормозные синапсы и медиаторы. Механизмы передачи возбуждения через центральные синапсы.
- •2.31.Торможение в цнс, его значение и виды.
- •2.32.Нейронная организация спинного мозга его функции.
- •2.33.Регуляция двигательной сферы спинным мозгом. Тонические и фазные рефлексы спинного мозга.
- •2.34.Миотатические и позно-тонические рефлексы, их рефлекторные дуги,роль гамма-петли.
- •2.35.Рефлексы «сгибания-разгибания» , реципрокное торможение и роль клеток Реншоу в локомоции.
- •2.36.Клиническое значение исследования миотатических рефлексов.
- •2.37.Проводящие пути спинного мозга, их функциональная характеристика.
- •2.38.Функции продолговатого мозга. Бульбарные нервные центры и их роль в обеспечении жизнедеятельности организма.
- •2.39.Роль заднего мозга в обеспечении антигравитационной позы. Роль вестибуло- и ретикулоспинального трактов. Спинальный шок.
- •2.40.Роль средшего мозга в регуляции стереотипных непроизвольных движений.
- •2.41.Роль стволовой части мозга в регуляции мышечного тонуса. Децеребрационная ригидность.
2.35.Рефлексы «сгибания-разгибания» , реципрокное торможение и роль клеток Реншоу в локомоции.
Клетки Реншоу (КР) (англ. Renshaw cells) — тормозные вставочные нейроны, расположенные в передних рогах спинного мозга, несколько дорсальнее и медиальнее, чем мотонейроны (МН). Это небольшие клетки. Диаметр тела клетки Реншоу равен 10-20 мкм, дендриты имеют длину в 100—150 мкм, аксоны этих клеток — длинные (до 12 мм).
2.36.Клиническое значение исследования миотатических рефлексов.
Глубокий (миотатический) рефлекс - непроизвольное сокращение мышцы в ответ на раздражение содержащихся в ней рецепторов мышечных веретён, которое, в свою очередь, обусловлено пассивным растяжением мышцы. Такое растяжение в клинической практике обычно достигается коротким отрывистым ударом неврологического молоточка по сухожилию мышцы. Характеристики глубоких рефлексов отражают целостность всей рефлекторной дуги (состояние чувствительных и двигательных волокон периферического нерва, задних и передних корешков спинномозговых нервов, соответствующих сегментов спинного мозга), а также соотношение тормозных и активирующих надсегментарных влияний. Глубокий рефлекс вызывают лёгким быстрым ударом по сухожилию расслабленной и немного растянутой мышцы. При нанесении ударов кисть руки должна совершать свободное колебательное движение в лучезапястном суставе, рукоятку неврологического молоточку удерживают неплотно, чтобы молоточек мог совершать некоторое дополнительное колебательное движение вокруг точки его фиксации. Следует избегать «заколачивающих» движений рукой. Пациент должен находиться в достаточно расслабленном состоянии и не прилагать усилий к удержанию равновесия; его конечности должны располагаться симметрично. Если пациент напрягает мышцу, рефлекс снижается либо вообще исчезает. Следовательно, если рефлекс вызывается с трудом, внимание пациента отвлекают от исследуемой области: например (при исследовании рефлексов с ног), просят крепко сжать зубы либо сцепить пальцы обеих рук и с силой тянуть кисти в стороны .
2.37.Проводящие пути спинного мозга, их функциональная характеристика.
Белое вещество спинного мозга состоит из миелиновых волокон, которые собраны в пучки. Эти волокна могут быть короткими (межсегментарные) и длинными — соединяющими разные отделы головного мозга со спинным и наоборот. Короткие волокна (их называют ассоциативными) связывают нейроны разных сегментов или симметричные нейроны противоположных сторон спинного мозга. Длинные волокна (их называют проекционными) делятся на восходящие, идущие к головному мозгу, и нисходящие — идущие от головного мозга к спинному. Эти волокна образуют проводящие пути спинного мозга. Пучки аксонов образуют вокруг серого вещества так называемые канатики: передние — расположенные кнутри от передних рогов, задние — расположенные между задними рогами серого вещества, и боковые — расположенные на латеральной стороне спинного мозга между передними и задними корешками. Аксоны спинальных ганглиев и серого вещества спинного мозга идут в его белое вещество, а затем в другие структуры ЦНС, создавая тем самым восходящие и нисходящие проводящие пути. В передних канатиках расположены нисходящие пути: 1) передний корково-спинномозговой, или пирамидный, путь (tractus corticospinalis ventralis, s.anterior), являющийся прямым неперекрещенным; 2) задний продольный пучок (fasciculus longitudinalis dorsalis, s.posterior); 3) покрышечно-спинномозговой, или тектоспинальный, путь (tractus tectospinalis); 4) преддверно-спинномозговой, или вестибулоспинальный, путь (tractus vestibulospinalis). В задних канатиках проходят восходящие пути: 1) тонкий пучок, или пучок Голля (fasciculus gracilis); 2) клиновидный пучок, или пучок Бурдаха (fasciculus cuneatus). В боковых канатиках проходят нисходящие и восходящие пути. К нисходящим путям относятся: 1) латеральный корково-спинномозговой, или пирамидный, путь (tractus corticospinalis lateralis), является перекрещенным; 2)красноядерно-спинномозговой, или руброспинальный, путь (tractus rubrospinalis); 3)ретикулярно-спинномозговой, или ретикулоспинальный, путь (tractus reticulospinalis). К восходящим путям относятся: 1)спинно-таламический (tractus spinothalamicus) путь; 2)латеральный и передний спинно-мозжечковые, или пучки Флексига и Говерса (tractus spinocerebellares lateralis et ventralis).