Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ремонт.docx
Скачиваний:
6
Добавлен:
01.07.2025
Размер:
515.64 Кб
Скачать

54.Лазерная и плазменная сварка и наплавка.

Лазерная наплавка — эффективный метод восстановления старых или повышения прочности новых деталей машин и механизмов, при помощи создания на поверхности изделия плакирующего слоя из порошкового материала, с проплавлением его посредством лазерного луча. Существующие технологии наплавки, которые широко используются в инструментальном производстве (электроискровой и микроплазменный методы, наплавка штучными электродами) не в полной мере удовлетворяют современным требованиям ремонтного производства.

Луч импульсного лазера обладает наибольшим коэффициентом сосредоточенности сварочного источника энергии, поэтому диаметр сфокусированного луча лазера d составляет 0,2¸0,3 мм, что позволяет минимизировать объемы расплава и соответственно уменьшить тепловложения в обрабатываемый материал. Восстановительная наплавка применяется для получения первоначальных размеров изношенных или поврежденных деталей. В этом случае наплавленный металл близок по составу и механическим свойствам основному металлу.

Преимущества лазерной наплавки

· дозируемая энергия;

· возможность локальной обработки поверхности;

· отсутствие термических поводок, минимизация зоны термического влияния (ЗТВ);

· возможность обработки деталей больших габаритов благодаря высокой производительности наплавки;

· быстрый нагрев и остывание наплавляемого материала;

· образуемая ультрадисперсная структура покрытия эффективно противостоит процессам коррозии и эрозии;

· возможность обработки на нужную глубину;

· минимальное перемешивание основного и наплавляемого материала.

Лазерная наплавка применяется в случае, если ЗТВ должна быть минимальной. Такой обработке подвергаются крестовины карданного вала (жесткий допуск на перпендикулярность осей) и рубашки вала (тонкостенная). Кроме того, лазерная наплавка может использоваться для обработки особо подверженных износу деталей с большими габаритами.

Плазменная металлизация (газотермическое напыление) – это нанесение металлического покрытия на поверхность изделия путём расплавления и переноса напыляемого металла плазменной струёй или дугой. Напыление осуществляется с помощью плазмотронов по схемам, показанным на рис. 5.11. При использовании плазменной струи для напыления применяют металлический порошок, подаваемый вместе с газом, а при использовании плазменной дуги применяют проволочный материал.

Плазменная металлизация даёт наилучшее сцепление покрытия с деталью (прочность сцепления в 2–4 раза выше, чем при дуговой металлизации) и позволяет напылять износостойкие тугоплавкие материалы, а также твёрдые сплавы. Однако её стоимость значительно выше, а производительность ниже, чем у дуговой металлизации.

55.Особенности сварки чугунных деталей.

Из чугуна изготовляются многие базисные детали строительно-дорожных машин, тракторов, автомобилей и технологического оборудования. При эксплуатации этих машин у чугунных деталей появляются .трещины, изломы, износы, которые необходимо устранять.

Сварка чугуна затруднена вследствие следующих причин :

1-склонности чугуна к отбеливанию;

2-трещинообразования при сварке;

3-резкого перехода при нагреве из твердого состояния в жидкое.

Чугун называется отбеленным, если большая часть углерода в нем находится в химически связанном состоянии , т.е. в виде цементита  Fe3C. Отбеливание происходит при быстром охлаждении расплавленного чугуна, Углерод не успевает выделится в виде графита, а выделяется в виде цементита, ледебурита и мартенсита; чугун становится твердым и не поддается механической обработке.

В сером чугуне углерод находится в виде графита. Графитизация чугуна происходит не только при переходе чугуна из жидкого состояния в твердое, но и при дальнейшем охлаждении , причем чем медленнее охлаждается деталь, тем полнее происходит графитизация. Холодная масса чугунной , чаще всего большой по массе детали, ускоренно отводит тепло сварки, поэтому происходит интенсивное отбеливание сварного шва , а вследствие различия коэффициентов расширения серого и белого чугунов возникают внутренние трещины.

Избежать этих затруднений при сварке чугуна можно двумя способами :

1. Выполнять горячую сварку металла с последующим медленным охлаждением после сварки;

2. Выполнять холодную сварку чугуна, но вводить в шов элементы, препятствующие образованию цементита , или использовать способы упрочнения .швов.

Горячая сварка чугуна проводится на предварительно нагретых до 600 …. 650 °С деталях. После сварки происходит охлаждение всей массы нагретой детали, поэтому скорость охлаждения сварного шва будет ниже, чем при холодной сварке. В сварном шве успевает произойти графитизация, скорость усадки уменьшается и поэтому не образуется трещин в околошовной зоне.

При заварке трещин в конструктивно сложных деталях с целью устранения возможного трещинообразования проводится 2-х ступенчатый нагрев : сначала до температуры 200 …250 °С нагревают с относительно не высокой скоростью до 600 °/ час, а далее -с большей скоростью до 1600 °/ час. Сварка выполняется электродами типа ОМЧ-1, состоящих из чугунных прутков со специальным покрытием, или при газовой сварке чугунными прутками без покрытия .

Горячая сварка позволяет получить наилучшие результаты, но процесс технологически сложный и очень трудоемкий, поэтому широкого распространения не получила.

Чаще применяется холодная сварка чугуна, выполняемая следующими способами :

1.Стальным малоуглеродистым электродом.

2. Специальными электродами ПАНЧ-11, МНЧ-1, МНЧ-2, ОЗЧ-1 и др.

3. Биметаллическим электродом или пучком электродов.