- •3 Из истории изучения нуклеиновых кислот
- •Методы выделений днк
- •Нуклеотиды
- •6 Определение нуклеотидной последовательности (секвенирование) днк
- •Метод Маскама и Гилберта (химический)
- •Метод Сэнгера (ферментативный)
- •7 Вторичная структура днк
- •Денатурация (плавление) днк
- •9 Третичная структура днк (суперспирализация днк)
- •Негистоновые белки хроматина
- •10 Виды рнк
- •10 Распад нуклеиновых кислот
- •13 Биосинтез пуриновых нуклеотидов
- •14 Биосинтез пиримидиновых нуклеотидов
- •15 Распад белков
- •17 Биосинтез аминокислот: общие сведения
- •18 Биосинтез днк
- •21 Обратная транскрипция
- •24 Физико-химические свойства белков
- •Белки как амфотерные макромолекулы
- •Коллоидные и осмотические свойства белков
- •Гидратация белков и факторы, влияющие на их растворимость
- •Высаливание
- •Денатурация (денативация) и ренатурация (ренативация)
- •25 Влияние рН на заряд белка
- •26 Методы количественного определения белков
- •2. Классификация аминокислот по химическому строению радикалов
- •3. Классификация аминокислот по растворимости их радикалов в воде
- •4. Изменение суммарного заряда аминокислот в зависимости от рН среды
- •5. Модифицированные аминокислоты,присутствующие в белках
- •6. Химические реакции, используемые для обнаружения аминокислот
- •30 Аминокислотный состав белков
- •31 Первичная структура
- •32 Третичная структура
- •Общие свойства катализаторов
- •Строение ферментов
- •Классификация ферментов
- •3. Витамин а (ретинол, антиксерофтальмический) Необходимо знать формулу витамина а.
- •4. Витамин д (холекальциферол, антирахитный) Сам витамин д не обладает витаминной активностью, но он служит предшественником 1,25-дигидрокси-холекальциферола (1,25-дигидроксивитамина д3).
- •44 Активация аминокислот
- •51 52 Ликогенолиз, фосфоролиз, гидролиз гликогена
- •Регуляция скорости β-окисления
- •Пептидные гормоны, используемые для оценки функционального состояния спортсменов (по в.А. Рогозкину, 1989)
- •Стероидные гормоны, используемые для оценки функционального состояния спортсменов (по в.А. Рогозкину, 1990)
- •Эффекты катехоламинов в организме человека
- •59 Иерархия регуляторных систем
- •60 Взаимосвязь обмена веществ в организме
Регуляция скорости β-окисления
β-Окисление - метаболический путь, прочно связанный с работой ЦПЭ и общего пути катаболизма. Поэтому его скорость регулируется потребностью клетки в энергии, т.е. соотношениями АТФ/АДФ и NADH/NAD+, так же, как и скорость реакций ЦПЭ и общего пути катаболизма (см. раздел 6). Скорость β-окисления в тканях зависит от доступности субстрата, т.е. от количества жирных кислот, поступающих в митохондрии. Концентрация свободных жирных кислот в крови повышается при активации ли-полиза в жировой ткани при голодании под действием глюкагона и при физической работе под действием адреналина. В этих условиях жирные кислоты становятся преимущественным источником энергии для мышц и печени, так как в результате β-окисления образуются NADH и ацетил-КоА, ингибирующие пируватдегидрогеназный комплекс. Превращение пирувата, образующегося из глюкозы, в ацетил-КоА замедляется. Накапливаются промежуточные метаболиты гликолиза и, в частности, глюкозо-6-фосфат. Глюкозо-6-фосфат ингибирует гексокиназу и, следовательно, препятствует использованию глюкозы в процессе гликолиза. Таким образом, преимущественное использование жирных кислот как основного источника энергии в мышечной ткани и печени сберегает глюкозу для нервной ткани и эритроцитов.
Скорость β-окисления зависит также от активности фермента карнитинацилтрансферазы I. В печени этот фермент ингибируется малонил-КоА, веществом, образующимся при биосинтезе жирных кислот. В абсорбтивный период в печени активируется гликолиз и увеличивается образование ацетил-КоА из пирувата. Первая реакция синтеза жирных кислот - превращение ацетил-КоА в малонил-КоА. Малонил-КоА ингибирует β-окисление жирных кислот, которые могут использоваться для синтеза жира.
58 Классификация гормонов. Гормоны - специфические физиологически активные вещества, вырабатываемые специальными эндокринными органами или тканями, секретируемые в кровь или лимфу и действующие на строение или функции организма вне места своего образования. Гормоны участвуют в регуляции функций организма как единого целого.
Термин гормон (от греч. hormáono - побуждаю, привожу в движение) был предложен У. Бэйлиссом и Э. Старлингом в 1905 г. Несмотря на разную химическую природу гормоны имеют общие биологические признаки:
дистантность действия - гормоны регулируют обмен и функции эффекторных клеток на расстоянии;
строгая специфичность биологического действия - один гормон нельзя заменить другим;
191
высокая биологическая активность - для функционирования организма достаточно очено малых количеств гормона.
По химическому строению гормоны разделяют на группы.
Пептидные гормоны. К пептидным относятся гормоны, являющиеся полипептидами. Они синтезируются в нейросекреторных клетках головного мозга (гипоталамусе, гипофизе), щитовидной, паращитовидной и поджелудочной железах.
Стероидные гормоны. К этой группе принадлежат гормоны, являющиеся производными полициклических спиртов - стеролов. Их синтез происходит в надпочечниках, семенниках, яичниках и некоторых других органах и тканях.
Прочие гормоны. Эту группу составляют гормоны, не относящиеся к первым двум категориям, и синтезируются они в щитовидной железе, надпочечниках, репродуктивных органах и в некоторых тканях.
Структура и функции пептидных гормонов. В данном разделе мы рассмотрим структуру и функции пептидных гормонов, используемых для оценки функционального состояния спортсменов.
Вазопрессин - девятичленный пептид, синтезируемый задней долей гипофиза:
Главной функцией вазопрессина является регуляция водно-электролитного обмена. Наряду с главной функцией вазопрессин стимулирует сокращение гладких мышц сосудов.
Глюкагон состоит из 29 аминокислотных остатков, молекулярная масса 3500 Да. Он синтезируется в α-клетках островковой части поджелудочной железы. Глюкагон способствует превращению неактивной гликогенфосфорилазы в активную, результатом является усиление гликогенолиза и увеличение концентрации глюкозо-1-фосфата в крови.
Инсулин - пептид, вырабатываемый в β-клетках поджелудочной железы. Первичная структура инсулина представлена выше. Инсулин регулирует метаболизм углеводов, жиров и белков. При недостаточном уровне биосинтеза инсулина в поджелудочной железе человека (норма - 2 мг инсулина в сутки) развивается заболевание - диабет. При этом заболевании повышается уровень глюкозы в крови, в результате уменьшается содержание гликогена
192
в мышцах, замедляется биосинтез пептидов, белков и жиров, нарушается минеральный обмен.
Паратгормон синтезируется паращитовидной железой. Паратгормон состоит из 84 аминокислотных остатков, молекулярная масса - 9500 Да. Паратгормон регулирует содержание катионов кальция и анионов фосфорной и лимонной кислот в крови.
Кальцитонин - белок с молекулярной массой 30 к Да, синтезируемый щитовидной и паращитовидной железами. Кальцитонин регулирует фосфорно-кальциевый обмен.
Соматотропин (гормон роста) - белок, секретируемый передней долей гипофиза. Соматотропин состоит из 191 аминокислотного остатка, молекулярная масса - 21 к Да. Гормон роста обладает ярко выраженным анаболическим действием. Он оказывает влияние на все клетки организма, повышая в них уровень биосинтетических процессов: усиливает синтез нуклеиновых кислот (ДНК, РНК), белков, гликогена. Соматотропин повышает мобилизацию жиров из жировых депо, ускоряет распад высших жирных кислот и глюкозы. Все эти процессы способствуют росту организма, но функциональное значение гормона роста значительно шире, нежели только регуляция роста.
Опиоидные пептиды. В центральной нервной системе были обнаружены опиоидные рецепторы, что привело в дальнейшем к открытию эндогенных опиоидных пептидов - эндорфинов и энкефалинов, выполняющих функцию межклеточных и межтканевых нейрорегуляторов.
Эндогенные опиоидные пептиды составляют особую группу морфиноподобных нейромедиаторов и нейрорегуляторов, физиологическая функция которых проявляется в обезболивающих эффектах, чувстве эйфории, поэтому их называют "пептидами счастья".
Энкефалины и эндорфины образуются в клетках гипофиза из одного белкового предшественника - проопиокортина (молекулярная масса 31 к Да). В результате ограниченного протеолиза из проопиокортина образуются γмеланоцитостимулирующий гормон, адренокортикотропный гормон (АКТГ) и β-липотропин. Из β-липотропина (молекулярная масса 11 200 Да) образуются шесть других гормонов: γ-липотропин (5800 Да), β-меланоцитостимулирующий гормон (2000 Да), β-эндорфин (4000 Да), γ-эндорфин (состоит из 17 аминокислотных остатков), α-эндорфин (состоит из 16 аминокислотных остатков), метионин-энкефалин (состоит из 5 аминокислотных остатков).
Опиоидные пептиды являются важным звеном в регуляции деятельности нервной и эндокринной систем, что проявляется
193
в широком спектре биологической активности данных соединений. Эта активность включает в себя воздействие на самые разнообразные проявления жизнедеятельности организма: терморегуляцию, формирование ощущения боли, чувства голода, функции сердечно-сосудистой, дыхательной, иммунной, пищеварительной систем, двигательную активность. Эндогенной опиоидной системе принадлежит важная роль в формировании реакций организма на воздействие окружающей среды.
Механизм действия пептидных гормонов. Пептидные гормоны взаимодействуют с белками-рецепторами, расположенными на поверхности мембран клеток-мишеней. Такое взаимодействие возбуждает активность аденилатциклазы, локализованной в той же мембране. Фермент катализирует образование циклического аденозинмонофосфата (цАМФ) из АТФ:
АТA
Аденилатциклоза |
———————→ |
цАМA + H2P2O7
Циклический аценозинмонофосфат является внутриклеточным посредником в передаче гормонального сигнала. В основе молекулярного механизма действия цАМФ лежит активация протеинкиназ, чувствительных к цАМФ, который изменяет активность ряда внутриклеточных ферментов путем их фосфорилирования и таким образом регулирует многие биохимические процессы: обмен гликогена, расщепление триглицеридов, синтез белков и др. Поэтому цАМФ считается одним из основных регуляторов обмена веществ.
Данные о содержании пептидных гормонов в крови спортсменов используются для оценки их функционального состояния (таблица 15).
Таблица 15
