- •3 Из истории изучения нуклеиновых кислот
- •Методы выделений днк
- •Нуклеотиды
- •6 Определение нуклеотидной последовательности (секвенирование) днк
- •Метод Маскама и Гилберта (химический)
- •Метод Сэнгера (ферментативный)
- •7 Вторичная структура днк
- •Денатурация (плавление) днк
- •9 Третичная структура днк (суперспирализация днк)
- •Негистоновые белки хроматина
- •10 Виды рнк
- •10 Распад нуклеиновых кислот
- •13 Биосинтез пуриновых нуклеотидов
- •14 Биосинтез пиримидиновых нуклеотидов
- •15 Распад белков
- •17 Биосинтез аминокислот: общие сведения
- •18 Биосинтез днк
- •21 Обратная транскрипция
- •24 Физико-химические свойства белков
- •Белки как амфотерные макромолекулы
- •Коллоидные и осмотические свойства белков
- •Гидратация белков и факторы, влияющие на их растворимость
- •Высаливание
- •Денатурация (денативация) и ренатурация (ренативация)
- •25 Влияние рН на заряд белка
- •26 Методы количественного определения белков
- •2. Классификация аминокислот по химическому строению радикалов
- •3. Классификация аминокислот по растворимости их радикалов в воде
- •4. Изменение суммарного заряда аминокислот в зависимости от рН среды
- •5. Модифицированные аминокислоты,присутствующие в белках
- •6. Химические реакции, используемые для обнаружения аминокислот
- •30 Аминокислотный состав белков
- •31 Первичная структура
- •32 Третичная структура
- •Общие свойства катализаторов
- •Строение ферментов
- •Классификация ферментов
- •3. Витамин а (ретинол, антиксерофтальмический) Необходимо знать формулу витамина а.
- •4. Витамин д (холекальциферол, антирахитный) Сам витамин д не обладает витаминной активностью, но он служит предшественником 1,25-дигидрокси-холекальциферола (1,25-дигидроксивитамина д3).
- •44 Активация аминокислот
- •51 52 Ликогенолиз, фосфоролиз, гидролиз гликогена
- •Регуляция скорости β-окисления
- •Пептидные гормоны, используемые для оценки функционального состояния спортсменов (по в.А. Рогозкину, 1989)
- •Стероидные гормоны, используемые для оценки функционального состояния спортсменов (по в.А. Рогозкину, 1990)
- •Эффекты катехоламинов в организме человека
- •59 Иерархия регуляторных систем
- •60 Взаимосвязь обмена веществ в организме
Методы выделений днк
ДНК может быть выделена из любого типа тканей и клеток, содержащих ядра. Этапы выделения ДНК включают быстрый лизис клеток, удаление фрагментов клеточных органелл и мембран с помощью центрифугирования, ферментативное разрушение белков протеиназами и экстрагирование ДНК из раствора с помощью фенола и хлороформа. Затем ДНК осаждают, как правило, этанолом и после удаления надосадочной жидкости растворяют в буферном растворе.
Оценку качества экстрагированной ДНК проводят на основании измерения оптической плотности раствора ДНК в области белкового и нуклеинового спектров поглощения, т.е. при 280 и 260 нм, соответственно. Для чистых образцов ДНК соотношение оптических плотностей, полученных при 260/280 нм, должно быть больше 1,8.
Молекула ДНК одной хромосомы среднего размера содержит 150х106 пар нуклеоти-дов и имеет длину около 4 см. Молекулы такого размера чувствительны к механическим воздействиям, возникающим в растворе в процессе выделения, и часто фрагментируются. В ходе выделения получают молекулы ДНК значительно меньше исходных, но всё равно очень большие - тысячи или десятки тысяч пар нуклеотидов. Такие молекулы неудобны для исследований, и их приходится дополнительно фрагментировать.
Для лабораторного и промышленного получения ДНК обычно используют вилочковую железу теленка, а также сперму (молоки) рыб, селезенку млекопитающих, ядерные эритроциты птиц.
Препараты ДНК, получаемые обычно в виде натриевой соли ДНК, имеют вид белых волокон. Для сохранения нативных свойств ДНК обработку тканей и клеток проводят на холоду, по возможности быстро, в условиях, исключающих или уменьшающих действие дезоксирибонуклеаз, как правило, содержащихся в тканях и вызывающих ферментативный распад ДНК. Помимо сохранения нативных свойств, важнейшей задачей является очистка ДНК от других веществ, в первую очередь — от белков и РНК. В связи с этим методы получения ДНК различаются главным образом способами депротеинизации и очистки препаратов от примесей РНК. Для этих целей применяют обработку клеток и тканей различными детергентами, фенолами и другими депротеинизирующими агентами.
При получении ДНК из животных и растительных тканей чаще всего предварительно изолируют фракцию клеточных ядер или выделяют дезоксирибонуклеопротеиды, отмывая их солевыми растворами в физиологических концентрациях в присутствии ЭДТА или других соединений, связывающих двухвалентные катионы, необходимые для проявления ферментативной активности дезоксирибонуклеаз. После удаления основной массы белков препараты дополнительно депротеинизируют хлороформом с октанолом или фенолом. Нередко их обрабатывают также рибонуклеазами и протеолитическими ферментами, обычно проназой.
Для получения ДНК из бактерий обычно пользуются методом Мармура. который заключается в отмывании бактериальной массы 0,15 М Nad, содержащим 0,015 М цитрат натрия, лизисе клеток при 60° и рН 8,0 в 0,15 М NaCI, содержащем ЭДТА и 2% додецилсульфат натрия, депротепнизации их хлороформом, содержащим изоамиловый спирт, переосаждении спиртом, повторной многократной депротеинизации, обработке рибонуклеазой и осаждении изопропиловым спиртом. Этот метод в различных модификациях также успешно применяют для получения ДНК из животных и растительных тканей и изолированных клеточных структур, например, митохондрий.
5.
