- •3 Из истории изучения нуклеиновых кислот
- •Методы выделений днк
- •Нуклеотиды
- •6 Определение нуклеотидной последовательности (секвенирование) днк
- •Метод Маскама и Гилберта (химический)
- •Метод Сэнгера (ферментативный)
- •7 Вторичная структура днк
- •Денатурация (плавление) днк
- •9 Третичная структура днк (суперспирализация днк)
- •Негистоновые белки хроматина
- •10 Виды рнк
- •10 Распад нуклеиновых кислот
- •13 Биосинтез пуриновых нуклеотидов
- •14 Биосинтез пиримидиновых нуклеотидов
- •15 Распад белков
- •17 Биосинтез аминокислот: общие сведения
- •18 Биосинтез днк
- •21 Обратная транскрипция
- •24 Физико-химические свойства белков
- •Белки как амфотерные макромолекулы
- •Коллоидные и осмотические свойства белков
- •Гидратация белков и факторы, влияющие на их растворимость
- •Высаливание
- •Денатурация (денативация) и ренатурация (ренативация)
- •25 Влияние рН на заряд белка
- •26 Методы количественного определения белков
- •2. Классификация аминокислот по химическому строению радикалов
- •3. Классификация аминокислот по растворимости их радикалов в воде
- •4. Изменение суммарного заряда аминокислот в зависимости от рН среды
- •5. Модифицированные аминокислоты,присутствующие в белках
- •6. Химические реакции, используемые для обнаружения аминокислот
- •30 Аминокислотный состав белков
- •31 Первичная структура
- •32 Третичная структура
- •Общие свойства катализаторов
- •Строение ферментов
- •Классификация ферментов
- •3. Витамин а (ретинол, антиксерофтальмический) Необходимо знать формулу витамина а.
- •4. Витамин д (холекальциферол, антирахитный) Сам витамин д не обладает витаминной активностью, но он служит предшественником 1,25-дигидрокси-холекальциферола (1,25-дигидроксивитамина д3).
- •44 Активация аминокислот
- •51 52 Ликогенолиз, фосфоролиз, гидролиз гликогена
- •Регуляция скорости β-окисления
- •Пептидные гормоны, используемые для оценки функционального состояния спортсменов (по в.А. Рогозкину, 1989)
- •Стероидные гормоны, используемые для оценки функционального состояния спортсменов (по в.А. Рогозкину, 1990)
- •Эффекты катехоламинов в организме человека
- •59 Иерархия регуляторных систем
- •60 Взаимосвязь обмена веществ в организме
24 Физико-химические свойства белков
Белки как амфотерные макромолекулы
Белки являются амфотерными полиэлектролитами, т.е. сочетают в себе, подобно аминокислотам, кислотные и основные свойства. Однако природа групп, придающих амфотерные свойства белкам, далеко не та же, что у аминокислот. Кислотно-основные свойства аминокислот обусловлены прежде всего наличием α-амино- и α-карбоксильной групп (кислотно-основная пара). В молекулах белков эти группы участвуют в образовании пептидных связей, а амфотерность белкам придают кислотно-основные группы боковых радикалов аминокислот, входящих в белок. Разумеется, в каждой молекуле нативного белка (полипептидной цепи) имеется как минимум по одной концевой α-амино- и α-карбоксильной группе (если у белка только третичная структура). У белка с четвертичной структурой число концевых групп —NН2 и —СООН равно числу субъединиц, или протомеров. Однако столь незначительное число этих групп не может объяснить амфотерность макромолекул белка. Поскольку большая часть полярных групп находится на поверхности глобулярных белков, то именно они определяют кислотно-основные свойства и заряд белковой молекулы. Кислотные свойства белку придают кислые аминокислоты (аспарагиновая, глутаминовая и аминолимонная), а щелочные свойства — основные аминокислоты (лизин, аргинин, гистидин). Чем больше кислых аминокислот содержится в белке, тем ярче выражены его кислотные свойства, и чем больше входит в состав белка основных аминокислот, тем сильнее проявляются его основные свойства. Слабая диссоциация SН-группы цистеина и фенольной группы тирозина (их можно рассматривать как слабые кислоты) почти не влияет на амфотерность белков.
Буферные свойства. Белки хотя и обладают свойствами буфера, но емкость их при физиологических значениях рН ограничена. Исключение составляют белки, содержащие много гистидина, так как только боковая группа гистидина обладает буферными свойствами в интервале значений рН, близких к физиологическим. Таких белков очень мало. Гемоглобин чуть ли не единственный белок, содержащий до 8% гистидина, является мощным внутриклеточным буфером в эритроцитах, поддерживая рН крови на постоянном уровне.
Заряд белковой молекулы зависит от содержания в ней кислых и основных аминокислот, а точнее, от ионизации кислых и основных групп бокового радикала этих аминокислот. Диссоциация СООН-групп кислых аминокислот вызывает появление отрицательного заряда на поверхности белка, а боковые радикалы щелочных аминокислот несут положительный заряд (за счет присоединения Н+ к основным группам). В нативной молекуле белка заряды распределяются асимметрично в зависимости от укладки полипептидной цепи в пространстве. Если в белке кислые аминокислоты преобладают над основными, то в целом молекула белка электроотрицательна, т. е. является полианионом, и наоборот, если преобладают основные аминокислоты, то она заряжена положительно, т. е. ведет себя как поликатион.
Суммарный заряд белковой молекулы, естественно, зависит от рН среды: в кислой среде он положителен, в щелочной отрицателен. То значение рН, при котором белок имеет суммарный нулевой заряд, называется изоэлектрической точкой данного белка. В этой точке белок не обладает подвижностью в электрическом поле. Изоэлектрическая точка каждого белка определяется соотношением кислых и основных групп боковых радикалов аминокислот: чем выше соотношение кислые/основные аминокислоты в белке, тем ниже его изоэлектрическая точка. У кислых белков рН1 < 7, у нейтральных рН1 около 7, а у основных рН1 > 7. При значениях рН среды ниже его изоэлектрической точки белок будет нести положительный заряд, а выше — отрицательный заряд. Усредненная изоэлектрическая точка всех белков цитоплазмы лежит в пределах 5,5. Следовательно, при физиологическом значении рН (около 7,0 - 7,4) клеточные белки имеют общий отрицательный заряд. Избыток отрицательных зарядов белков внутри клетки уравновешивается, как уже говорилось, неорганическими катионами.
Знание изоэлектрической точки очень важно для понимания стабильности белков в растворах, так как в изоэлектрическом состоянии белки наименее устойчивы. Незаряженные частицы белка могут слипаться друг с другом и выпадать в осадок.
