
- •Принятые сокращения
- •Предисловие
- •Глава 1. Системы возбуждения бесщёточных синхронных генераторов
- •1.1 Бесщёточный синхронный генератор
- •1.2. Элементы системы возбуждения
- •Контрольные вопросы
- •Глава 2. Автоматические регуляторы напряжения и арн типа fuji el.
- •2.1 Требования, предъявляемые к системам возбуждения и арн
- •2.2 Устройство и назначение основных блоков арн
- •2.3 Арн типа fuji El.
- •Контрольные вопросы
- •Глава 3. Бесщеточный синхронный генератор «Siemens» с системой возбуждения типа thyripart
- •Контрольные вопросы
- •Глава 4. Система возбуждения типа тr бесщеточного синхронного генератора
- •Контрольные вопросы
- •Глава 5. Система возбуждения Mitsubishi с арн типа vrg-bs7m
- •Обслуживание
- •Контрольные вопросы
- •Глава 6. Система возбуждения и регулирования напряжения синхронных генераторов типа Basler Electric
- •Контрольные вопросы
- •Глава 7. Система возбуждения и автоматического регулирования напряжения типа «taiyo»
- •Контрольные вопросы
- •Глава 8. Система возбуждения и автоматического регулирования напряжения wgsy судовых синхронных генераторов типа gd и gBdm1
- •Принцип действия
- •Параллельная работа генераторов с системой возбуждения wgsy
- •Обслуживание
- •Недостатки и способы их устранения
- •Контрольные вопросы
- •Глава 9. Цифровой тиристорный регулятор напряжения судовых генераторов (цтрн)
- •Назначение
- •Принцип действия
- •Меры безопасности
- •Контрольные вопросы
- •Глава 10. Регулятор напряжения типа трн
- •Назначение
- •Принцип действия
- •Меры безопасности:
- •Контрольные вопросы
- •Глава 11. Система возбуждения elin
- •Контрольные вопросы
- •Глава 12. Система возбуждения и автоматического регулирования напряжения strömberg2
- •Неисправности и их устранение
- •Контрольные вопросы
- •Глава 13. Система возбуждения и автоматического регулирования напряжения типа stamford
- •Контрольные вопросы
- •Глава 14.Система возбуждЕнИя и арн типа nishishiba
- •Заключение
- •Список использованной литературы
- •65029, М. Одеса, вул.. Дідріхсона, 8
Министерство образования и науки Украины
ОДЕССКАЯ НАЦИОНАЛЬНАЯ МОРСКАЯ АКАДЕМИЯ
А.А. Толстов
УСТРОЙСТВО И ЭКСПЛУАТАЦИЯ СУДОВЫХ СИНХРОННЫХ ГЕНЕРАТОРОВ
Учебное пособие
Одесса – 2006
ББК 31.261-1
Т 52
УДК 621.313.332
Толстов А.А. Устройство и эксплуатация судовых синхронных генераторов [Текст]: учебное пособие для курсантов и студентов морских вузов. – Одесса: ОНМА, 2006. – 150 с.
Рецензенты: — Яровенко В.А., д.т.н., профессор, заведующий кафедрой электрооборудования судов Одесского национального морского университета;
Слободниченко Б.И., к.т.н., доцент кафедры электротехники Академии холода.
Обсуждено и одобрено ученым советом ОНМА в качестве учебного пособия для курсантов (студентов) высших морских учебных заведений направления 0922 «Электромеханика» по дисциплине «СЭЭС» 27 января 2007 г., протокол № 3
© А.А. Толстов, 2006
СОДЕРЖАНИЕ
ПРИНЯТЫЕ СОКРАЩЕНИЯ 5
ПРЕДИСЛОВИЕ 6
Глава 1. Системы возбуждения бесщёточных синхронных генераторов 7
Глава 2. Автоматические регуляторы напряжения и АРН типа fuji el. 20
Глава 3. Бесщеточный синхронный генератор «Siemens» с системой возбуждения типа THYRIPART 32
Глава 4. Система возбуждения типа ТR бесщеточного синхронного генератора 46
Глава 5. Система возбуждения Mitsubishi с АРН типа VRG-BS7M 62
Глава 6. Система возбуждения и регулирования напряжения синхронных генераторов типа Basler Electric 69
Глава 7. Система возбуждения и автоматического регулирования напряжения типа «TAIYO» 81
Глава 8. Система возбуждения и автоматического регулирования напряжения WGSY судовых синхронных генераторов типа GD и GBdm 88
Глава 9. Цифровой тиристорный регулятор напряжения судовых генераторов (ЦТРН) 99
Глава 10. Регулятор напряжения типа ТРН 109
Глава 11. Система возбуждения ELIN 123
Глава 12. Система возбуждения и автоматического регулирования напряжения STRÖMBERG 129
Глава 13. Система возбуждения и автоматического регулирования напряжения типа STAMFORD 147
Глава 14.СИСТЕМА ВОЗБУЖДЕнИЯ И АРН ТИПА NISHISHIBA 157
Заключение 164
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 165
Принятые сокращения
АРН — автоматический регулятор напряжения;
АСУ — автоматическая система управления;
АСВ — автоматический выключатель генератора;
БСГ — бесщеточный синхронный генератор;
ГА — генераторный агрегат;
ГНВ — генератор начального возбуждения;
ГООС — гибкая отрицательная обратная связь;
ГРЩ — главный распределительный щит;
ДГ — дизель-генератор;
EVA — внешняя уставка напряжения (External Voltage Adjuster);
Ех — возбудитель (Exciter);
КН — корректор напряжения;
ОВ — обмотка возбуждения;
ОВГ — обмотка возбуждения генератора;
ОВВ — обмотка возбуждения возбудителя;
ООС — отрицательная обратная связь;
РН — регулятор напряжения;
CАРН — система автоматического регулирования напряжения;
СГ — синхронный генератор;
СИФУ — система импульсно-фазового управления;
СЭЭС — судовые электроэнергетические системы;
СФК — система фазового компаундирования;
ТРН — тиристорный регулятор напряжения;
ТР — терморезистор;
ТФК — трансформатор фазового компаундирования;
ЦПР — цепь параллельной работы.
Предисловие
Предлагаемое читателю издание представляет собой учебное пособие по дисциплине «Судовые электроэнергетические системы». Назначение ее заключается в том, чтобы дать курсантам, слушателям курсов повышения квалификации судовых специалистов необходимые знания в части автоматических регуляторов напряжения и их элементов.
После издания книг Ю.И. Максимова «Эксплуатация судовых синхронных генераторов» в 1969 и в 1983 г.г. автоматические регуляторы напряжения претерпели большие изменения — от инерционных магнитных схем до быстродействующих тиристорных, транзисторных и цифровых. Автором описаны современные регуляторы напряжения, причем, они представлены как в части устройств – описания, так и в части эксплуатации — устранения неисправностей.
Книга предназначена для курсантов ФЭМ и РЭ, ФА и может быть полезной судовым электроинженерам.
Автор выражает глубокую благодарность курсантам ФА, ФЭМ и РЭ за предоставление судовых инструкций на английском языке по разрабатываемой теме.
Большую помощь в работе над книгой оказали: д.т.н., профессор Власенко А.А., к.т.н., заведующий кафедрой Судовых электрических машин и автоматизированных приводов, профессор Васильев В.Н. и к.т.н., заведующий кафедрой Электрооборудования и автоматики судов доцент Луковцев В.С. Автор выражает им глубокую благодарность.
Рукопись одобрена и рекомендована к печати учёным советом ФЭМ и РЭ в качестве учебного пособия для курсантов 3-6 курсов.
Критические замечания и пожелания и прошу направлять по адресу: Одесса, ул. Дидрихсона 8, «ИздатИнформ».
Глава 1. Системы возбуждения бесщёточных синхронных генераторов
Системы возбуждения, используемые в настоящее время на судах действующего флота, являются замкнутыми комбинированного типа прямого действия с амплитудно-фазовым компаундированием. В качестве объекта управления в основном применяется надежный бесщеточный синхронный генератор с предвозбудителем или без него.
1.1 Бесщёточный синхронный генератор
Одним из основных недостатков при обслуживании судовых синхронных генераторов является наличие щёточно-кольцевого аппарата. Этот узел наиболее изнашивается в процессе работы. Большое количество пыли от угольных щёток загрязняет обмотки, создавая проводниковые мосты между токоведущими частями синхронного генератора и корпусом: ухудшается изоляция генератора, уменьшая срок их службы, требуется внеочередной ремонт с полной разборкой.
Всё это отсутствует у бесщёточных синхронных генераторов. Возбуждение СГ осуществляется небольшим по размерам возбудителем переменного тока, состоящим из трёхфазной обмотки, расположенной на роторе генератора и электромагнитных полюсов, находящихся на статоре рядом со статорной обмоткой основной машины. Обмотка возбуждения возбудителя питается постоянным током от автоматического регулятора напряжения. Трёхфазный переменный ток, генерируемый в роторной обмотке, выпрямляется трёхфазным выпрямителем, расположенным на роторной обмотке возбудителя и поступает на роторную обмотку возбуждения генератора. Выпрямительное устройство бесщёточного генератора состоит из кремниевых диодов, соединённых по трёхфазной мостовой схеме, регулируемого балластного резистора и сглаживающего конденсатора.
Бесщёточный синхронный генератор (рис. 1.1) состоит из следующих компонентов, где:
G — статорная обмотка, выходная;
FG — роторная обмотка возбуждения генератора;
Si — блок вращающихся кремниевых выпрямителей;
E — роторная обмотка возбудителя, выходная;
FE — статорная обмотка возбуждения;
EVA — внешний реостат задающего напряжения;
AVR — автоматический регулятор напряжения (АРН).
Статорная обмотка синхронного генератора уложена в пазы железа статора и представляет собой три обмотки, соединенные звездой.
Конструктивно БСГ объединён с возбудителем переменного тока и вращающимся выпрямительным устройством в один агрегат. Отличительной особенностью БСГ является отсутствие контактных колец и щёток.
Возбудитель представляет собой обращённый трёхфазный синхронный генератор, у которого обмотка возбуждения является неподвижной и питается непосредственно от автоматического регулятора напряжения. В некоторых рассматриваемых далее системах возбуждения и регулирования напряжения генераторов (например,“TAIYO”, “MITSUBISHI”) обмотка возбуждения возбудителя состоит из двух частей: основной и управляемой от AРН, что обеспечивает более надёжное начальное возбуждение. Трёхфазная роторная обмотка возбудителя, соединённая звездой подключена к роторной обмотке генератора через трёхфазный блок вращающихся кремниевых выпрямителей, который находится между этими двумя обмотками, ближе к возбудителю, на специально
Рис. 1.1. Бесщёточный синхронный генератор
смонтированном изоляционном кольце. Кольцо и вентили вращаются вместе с роторами генератора и возбудителя и размещёны на общем валу.
Трёхфазный переменный ток, генерируемый при вращении в роторной обмотке возбудителя, выпрямляется трёхфазным кремниевым выпрямителем, расположенным на роторной обмотке возбудителя, и постоянное напряжение поступает на роторную обмотку генератора. Расположение вращающихся выпрямителей на роторной обмотке возбудителя удобно как для воздушного охлаждения, так и проведения обслуживания и ремонтных работ при проверке и замене вентилей.
В дополнение к кремниевому выпрямителю параллельно выходному напряжению подключается сглаживающий конденсатор и разрядный резистор для предотвращения обмотки возбуждения и конденсатора от пробоя.
Благодаря такой конструкции, исчезает необходимость в контактных кольцах и щётках для подвода тока к обмотке возбуждения генератора. Таким образом, возбудитель совместно с AРН позволяет поддерживать напряжение генератора с заданным отклонением при малых и больших нагрузках и обеспечивает защиту от короткого замыкания. Отсутствие щёточной аппаратуры значительно повышает надёжность БСГ, сокращает трудозатраты на обслуживание ввиду отсутствия угольной пыли на обмотках. Они также могут применяться и на высоких частотах вращения первичных двигателей, чем обеспечивается более надёжное возбуждение.
У БСГ, также как и у обычных синхронных генераторов, имеется демпферная обмотка. Она находится на явных полюсах ротора и имеет вид широких медных шин, соединенных в беличью клетку. Назначением демпферной обмотки является предотвращение колебаний напряжения ввиду резкого изменения нагрузки при параллельной работе генераторов, а также ограничение повышения третьей гармоники напряжения с увеличением нагрузки.
В результате совместных усилий обмоток статора генератора и возбудителя создаётся результирующая магнитодвижущая сила а, следовательно, и поток возбуждения, обеспечивая реакцию ротора и падение напряжения в обмотке статора генератора во всех режимах работы – от холостого хода до номинальной нагрузки.
Возбудитель переменного тока представляет собой обращённый синхронный генератор роторного типа. Ротор установлен на том же валу, что и ротор генератора и представляет собой трехфазную обмотку переменного тока. Нагрузкой возбудителя является обмотка возбуждения статора, поэтому необходим возбудитель переменного тока высокой частоты: чем выше частота, тем больше возбуждение. Однако высокая частота стремится увеличить потери в железе. Так как увеличение числа полюсов пропорционально увеличению частоты, то частота особенно ограничивается при использовании на низкой частоте вращения с точки зрения экономичности конструкции. В основном, для возбудителя переменного тока принята частота 60 Гц.
Кремниевый выпрямитель возбудителя переменного тока. Учитывая электрические и механические свойства, кремниевый выпрямитель для бесщёточного синхронного генератора должен быть высоконадежным, небольших габаритов и массы.
Он состоит из кремниевой части, которая закреплена вертикально на тонкой пластине основания, для надежного контакта пластины, основания и элемента, и питающего провода. Этот силовой тип контакта кремниевого элемента выпрямителя использует свою огромную силу, когда она приложена вертикально вместе с давлением по направлению к пластине основания и проявляет великолепные характеристики, учитывая такие механические недостатки как внешнее давление, центробежная сила, вибрация системы в действии. Все главные части кремниевого элемента типа P-N перехода помещены в кожух, в котором находится инертный газ, на работу которого не влияют окружающие атмосферные условия.
В дополнение к кремниевому выпрямителю параллельно подключены конденсатор и резистор для предотвращения от чрезмерного напряжения обмоток, предохраняя их от пробоя. При сборке вышеупомянутых компонентов FUJI El. произвел тщательную проверку их механической силы и местоположения, минимизируя пространство для установки, добиваясь однородной и эффективной вентиляции.
По габаритам БСГ сохранил те же размеры что и обычные СГ.
В настоящее время бесщеточные синхронные генераторы успешно используются на судах в качестве основных и аварийных источников электроэнергии.
Рис. 1.2. Изоляция
вала БСГ от наводящих токов
В основном БСГ не требует особых трудозатрат на обслуживание. Достаточно почаще менять фильтры на воздухозаборах.
Таким образом, БСГ обеспечивает максимум надежности при минимуме трудозатрат на обслуживание.