- •Предмет курса, его цели и задачи. Понятие технологии и характеристика ее разновидностей. Технологическая структура сфер общественного производства.
- •Понятие технологического процесса, его основные параметры, их характеристика и использование при технико-экономическом анализе процесса.
- •Динамика трудовых затрат при развитии технологических процессов. Основные варианты развития технологических процессов.
- •Структура технологического процесса и характеристика его элементов. Технологические процессы с дискретным и непрерывным технологическими циклами, их сравнительная технико-экономическая оценка.
- •Общие сведения о технодинамике. Рационалистическое развитие технологического процесса, его закономерности.
- •Эвристическое развитие технологического процесса, его закономерности и основные направления развития. Обеспечение научно-технических процессов.
- •Понятие уровня технологии технологического процесса, его качественная и количественная оценка. Границы рационалистического развития технологического процесса.
- •Понятие среды и системы технологий. Исторические этапы развития систем технологий и их оценка.
- •Общая оценка технологических систем. Классификационные признаки систем технологий.
- •Структура технологических систем производства. Сравнительная технико-экономическая оценка формирования и развития последовательных и параллельных технологических систем.
- •Основные закономерности и направления развития систем технологических процессов. Понятие уровня технологии системы технологических процессов. Реальный и потенциальный уровень технологи системы.
- •Анализ формирования технологических систем промышленного предприятия. Взаимосвязь технологических и организационных структур производства.
- •Сравнительная технико-экономическая оценка формирования, функционирования и развития параллельных и последовательных технологических систем.
- •Базовые процессы в технологии, классификация. Общая характеристика механических процессов, используемых в современном производстве.
- •Базовые процессы в технологии, классификация. Общая характеристика гидромеханических процессов, используемых в современном производстве.
- •Базовые процессы в технологии, классификация. Общая характеристика тепловых процессов, используемых в современном производстве.
- •Базовые процессы в технологии, классификация. Общая характеристика массообменных процессов, используемых в современном производстве.
- •Базовые процессы в технологии, классификация. Общая характеристика химических процессов, используемых в современном производстве.
- •Основные виды и источники энергии, используемые в народном хозяйстве. Нетрадиционные виды энергии и их характеристика.
- •Минерально-сырьевые ресурсы и пути повышения эффективности их использования. Классификация сырья и основных методов его подготовки к промышленному использованию.
- •Машиностроительный комплекс и его роль в развитии общественного производства. Структура машиностроительного производства.
- •Общие сведения о машинах. Классификация. Основные этапы производства машины. Технико-экономические показатели машин.
- •Сущность технологи обработки металлов давлением. Технология прокатного производства. Технологический прогресс в области обработки металлов давлением.
- •Сущность, характеристика и сравнительная технико-экономическая оценка процессов ковки и штамповки.
- •Общая характеристика литейного производства. Литье в песчано-глинистые формы.
- •Технология и технико-экономическая оценка специальных методов литья: в кокиль, центробежное, под давлением.
- •Сущность и назначение основных видов технологии сварных соединений, их сравнительная технико-экономическая оценка.
- •Характеристика основных способов обработки металлов резанием, видов инструментов и оборудования.
- •Понятие о технологическом процессе сборки. Виды и организационные формы сборки, их технико-экономическая оценка.
- •Технологические основы производства керамики, характеристика сырья, основных стадий производства керамических изделий, его технико-экономическая оценка.
- •Технологические основы производства изделий из стекла (характеристика сырья, основных стадий производства, их технико-экономическая оценка). Классификация и характеристика важнейших видов стекла.
- •Общие сведения о бетоне и железобетоне. Основы технологии бетонных и железобетонных изделий. Технико-экономический анализ формирования железобетонных изделий.
- •Технологический прогресс – основа развития общественного производства. Основные этапы технологического развития общества.
- •Особенности технологического развития общества в современных условиях. Основные направления и перспективы научно-технологического развития.
- •Основы гибкой автоматизированной технологии, ее технико-экономическая оценка.
- •Основы робототехники и роботизации промышленного производства, технико-экономическая оценка.
- •Технология порошковой металлургии, ее технико-экономическая оценка.
- •Лазерная технология, сущность, основные области использования, технико-экономическая оценка.
- •Электрофизические и электрохимические методы обработки материалов, их сущность, области применения, технико-экономическая оценка.
- •Основы роторной технологии и ее технико-экономическая оценка.
- •Биотехнология, ее сущность, области использования. Основные виды биотехнологических процессов, их технико-экономическая оценка.
- •Основы радиационно-химической технологи, ее разновидности, технико-экономическая оценка.
- •Фотохимический и плазмохимический технологические процессы, их сущность, область применения и технико-экономическая оценка.
- •Мембранная технология, ее сущность, область применения. Основные виды мембранных технологических процессов, их технико-экономическая оценка.
Биотехнология, ее сущность, области использования. Основные виды биотехнологических процессов, их технико-экономическая оценка.
Биотехнология — это новый этап современных биотехнологических знаний и технологического опыта. Возникнув на стыке различных наук — микробиологии, биохимии, биофизики, генетики и др., базируясь на достижениях фундаментальных исследований, биотехнология стала одним из важнейших факторов развития общественного производства. Она создает возможность получения с помощью легкодоступных и возобновляемых ресурсов тех веществ и соединений, которые важны для жизни и благосостояния людей.
Биотехноло́гия — дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.
Современная биотехнология использует биологические процессы и системы для получения разнообразных продуктов. В настоящее время это многопрофильная и комплексная отрасль производства, которая включает в себя:
промышленную биотехнологию (микробиологический синтез);
генетическую и клеточную инженерию;
инженерную энзимологию (белковую инженерию).
Эти новые направления биотехнологии призваны способствовать решению насущных проблем медицины, сельского хозяйства, энергетики, рационального использования и охраны природных ресурсов.
Промышленная микробиология (микробиологический синтез) — наука, изучающая промышленное получение веществ с помощью микроорганизмов. Возможности микробиологической промышленности широко используются в медицине. Одним из мощных современных средств борьбы с инфекциями являются вакцины, производимые путем микробиологического синтеза.
Генетическая инженерия — принципиально новое научное направление биотехнологии, позволяющее создавать искусственные генетические структуры путем целенаправленного воздействия на материальные носители наследственности (молекулы ДНК). Прикладное использование генетической инженерии привело к возникновению так называемой индустрии ДНК, к которой относится, например, производство физиологических активных веществ белковой природы для медицинских и сельскохозяйственных нужд.
Клеточная инженерия. Клетки — это миниатюрные «фабрики», создающие необходимые организму вещества. Сегодня, благодаря методам клеточной инженерии, появилась возможность производить ценные продукты в искусственных условиях (вне организма). Методы клеточной инженерии успешно дополняют генно-инженерные. Используя клеточную инженерию, ученым удается выводить новые высокоурожайные и устойчивые к болезням, неблагоприятным условиям среды ценные для народного хозяйства растения.
Инженерная энзимология — наука, разрабатывающая основы создания высокоэффективных ферментов для промышленного использования, позволяющих многократно интенсифицировать технологические процессы при снижении их энер-го- и материалоемкости. Создание так называемых иммобилизованных (неподвижно закрепленных) ферментов, закрепляемых на полимерных носителях, явилось значительным шагом вперед в развитии современной биотехнологии. Иммобилизация ферментов повышает их устойчивость к нагреванию, изменению реакции среды, увеличивает срок их действия, облегчает отделение от продуктов реакции, дает возможность многократного использования.
