- •Предмет курса, его цели и задачи. Понятие технологии и характеристика ее разновидностей. Технологическая структура сфер общественного производства.
- •Понятие технологического процесса, его основные параметры, их характеристика и использование при технико-экономическом анализе процесса.
- •Динамика трудовых затрат при развитии технологических процессов. Основные варианты развития технологических процессов.
- •Структура технологического процесса и характеристика его элементов. Технологические процессы с дискретным и непрерывным технологическими циклами, их сравнительная технико-экономическая оценка.
- •Общие сведения о технодинамике. Рационалистическое развитие технологического процесса, его закономерности.
- •Эвристическое развитие технологического процесса, его закономерности и основные направления развития. Обеспечение научно-технических процессов.
- •Понятие уровня технологии технологического процесса, его качественная и количественная оценка. Границы рационалистического развития технологического процесса.
- •Понятие среды и системы технологий. Исторические этапы развития систем технологий и их оценка.
- •Общая оценка технологических систем. Классификационные признаки систем технологий.
- •Структура технологических систем производства. Сравнительная технико-экономическая оценка формирования и развития последовательных и параллельных технологических систем.
- •Основные закономерности и направления развития систем технологических процессов. Понятие уровня технологии системы технологических процессов. Реальный и потенциальный уровень технологи системы.
- •Анализ формирования технологических систем промышленного предприятия. Взаимосвязь технологических и организационных структур производства.
- •Сравнительная технико-экономическая оценка формирования, функционирования и развития параллельных и последовательных технологических систем.
- •Базовые процессы в технологии, классификация. Общая характеристика механических процессов, используемых в современном производстве.
- •Базовые процессы в технологии, классификация. Общая характеристика гидромеханических процессов, используемых в современном производстве.
- •Базовые процессы в технологии, классификация. Общая характеристика тепловых процессов, используемых в современном производстве.
- •Базовые процессы в технологии, классификация. Общая характеристика массообменных процессов, используемых в современном производстве.
- •Базовые процессы в технологии, классификация. Общая характеристика химических процессов, используемых в современном производстве.
- •Основные виды и источники энергии, используемые в народном хозяйстве. Нетрадиционные виды энергии и их характеристика.
- •Минерально-сырьевые ресурсы и пути повышения эффективности их использования. Классификация сырья и основных методов его подготовки к промышленному использованию.
- •Машиностроительный комплекс и его роль в развитии общественного производства. Структура машиностроительного производства.
- •Общие сведения о машинах. Классификация. Основные этапы производства машины. Технико-экономические показатели машин.
- •Сущность технологи обработки металлов давлением. Технология прокатного производства. Технологический прогресс в области обработки металлов давлением.
- •Сущность, характеристика и сравнительная технико-экономическая оценка процессов ковки и штамповки.
- •Общая характеристика литейного производства. Литье в песчано-глинистые формы.
- •Технология и технико-экономическая оценка специальных методов литья: в кокиль, центробежное, под давлением.
- •Сущность и назначение основных видов технологии сварных соединений, их сравнительная технико-экономическая оценка.
- •Характеристика основных способов обработки металлов резанием, видов инструментов и оборудования.
- •Понятие о технологическом процессе сборки. Виды и организационные формы сборки, их технико-экономическая оценка.
- •Технологические основы производства керамики, характеристика сырья, основных стадий производства керамических изделий, его технико-экономическая оценка.
- •Технологические основы производства изделий из стекла (характеристика сырья, основных стадий производства, их технико-экономическая оценка). Классификация и характеристика важнейших видов стекла.
- •Общие сведения о бетоне и железобетоне. Основы технологии бетонных и железобетонных изделий. Технико-экономический анализ формирования железобетонных изделий.
- •Технологический прогресс – основа развития общественного производства. Основные этапы технологического развития общества.
- •Особенности технологического развития общества в современных условиях. Основные направления и перспективы научно-технологического развития.
- •Основы гибкой автоматизированной технологии, ее технико-экономическая оценка.
- •Основы робототехники и роботизации промышленного производства, технико-экономическая оценка.
- •Технология порошковой металлургии, ее технико-экономическая оценка.
- •Лазерная технология, сущность, основные области использования, технико-экономическая оценка.
- •Электрофизические и электрохимические методы обработки материалов, их сущность, области применения, технико-экономическая оценка.
- •Основы роторной технологии и ее технико-экономическая оценка.
- •Биотехнология, ее сущность, области использования. Основные виды биотехнологических процессов, их технико-экономическая оценка.
- •Основы радиационно-химической технологи, ее разновидности, технико-экономическая оценка.
- •Фотохимический и плазмохимический технологические процессы, их сущность, область применения и технико-экономическая оценка.
- •Мембранная технология, ее сущность, область применения. Основные виды мембранных технологических процессов, их технико-экономическая оценка.
Лазерная технология, сущность, основные области использования, технико-экономическая оценка.
Лазер (оптический квантовый генератор) является источником оптического когерентного, т.е. согласованного, излучения, характеризующегося высокой направленностью и большой плотностью энергии.
Принцип действия оптического квантового генератора основан на искусственном стимулировании генерации светового излучения высокой мощности. При этом температура в точке приложения сфокусированного лазерного луча достаточна для превращения в пар любого материала. Передаваемое при поглощении лазерного излучения тепло приводит сначала к нагреву вещества, а затем — его плавлению и испарению. Дозируя определенным образом мощность лазерного излучения на поверхность обрабатываемого материала, можно реализовать практически любой температурно-временной режим нагрева, который и определяет вид технологической обработки.
Благодаря направленности и высокой концентрации энергии лазерного луча удается выполнять технологические операции, вообще не осуществимые каким-либо другим методом.
Лазерная обработка имеет свои особенности и преимущества:
1) высокая концентрация подводимой энергии в пятне нагрева и локальность обработки;
возможность передачи энергии в виде светового луча на расстояние в любой оптически прозрачной среде;
возможность получения перемещением луча импульсного (до 10-9 с) и непрерывного излучения с высокой точностью и скоростью;
возможность регулирования параметров лазерной обработки в широком интервале режимов;
отсутствие затрат механических усилий на обработку материала и независимость ее скорости от свойств материала;
высокая технологичность обработки и возможность ее автоматизации.
Лазеры имеют мощность непрерывного излучения до нескольких сотен киловатт и энергию отдельного импульса до нескольких сотен джоулей, однако при этом они:
имеют сравнительно большие геометрические размеры;
отличаются высокой энергоемкостью;
сложны в изготовлении и эксплуатации.
В настоящее время разработаны следующие основные методы лазерной обработки, различающиеся режимами проведения технологического процесса: лазерная термообработка, лазерная поверхностная обработка, лазерная размерная обработка, лазерная интенсификация химических реакций, лазерная сварка, измерительная лазерная технология.
Основные области применения лазерных технологий:
Раскрой и резка металлических и неметаллических материалов.
Упрочняющая поверхностная обработка.
Поверхностная очистка материалов.
Лазерная сварка.
Маркирование, гравирование, нанесение и считывание кодированных информационных знаков.
Носители информации в компьютерной технике.
Лазерная связь и локация.
Сельское хозяйство.
Медицина.
Индустрия развлечений.
Электрофизические и электрохимические методы обработки материалов, их сущность, области применения, технико-экономическая оценка.
В электрофизические и электрохимические методы обработки включают методы ультразвуковые, плазменные и ряд других методов. С разработкой и внедрением в производство этих методов сделан принципиально новый шаг в технологии обработки материалов — электрическая энергия из вспомогательного средства при механической обработке (осуществление движения заготовки, инструмента) стала рабочим агентом. Всё более широкое использование электрофизических и электрохимических методов обработки в промышленности обусловлено их высокой производительностью, возможностью выполнять технологические операции, недоступные механическим методам обработки. Электрофизические и электрохимические методы обработки весьма разнообразны и условно их можно разделить на электрофизические (электроэрозионные, электромеханические, лучевые), электрохимические и комбинированные.
Электрофизические методы обработки.
Электроэрозионная обработка основана на вырывании частиц материала с поверхности импульсом электрического разряда. Если задано напряжение (расстояние) между электродами, погруженными в жидкий диэлектрик, то при их сближении (увеличении напряжения) происходит пробой диэлектрика — возникает электрический разряд, в канале которого образуется плазма с высокой температурой.
Электромеханическая обработка объединяет методы, совмещающие одновременное механическое и электрическое воздействие на обрабатываемый материал в зоне обработки. К ним же относят методы, основанные на использовании некоторых физических явлений (например, гидравлический удар, ультразвук и др.)
Электрохимические методы обработки
Основаны на законах электрохимии. По используемым принципам эти методы разделяют на анодные и катодные, по технологическим возможностям — на поверхностные и размерные.
Поверхностная электрохимическая обработка. Суть метода состоит в том, что под действием электрического тока в электролите происходит растворение материала анода (анодное растворение), причём быстрее всего растворяются выступающие части поверхности, что приводит к её выравниванию. При этом материал снимается со всей поверхности, в отличие от механического полирования, где снимаются только наиболее выступающие части. Электролитическое полирование позволяет получить поверхности весьма малой шероховатости. Важное отличие от механического полирования — отсутствие каких-либо изменений в структуре обрабатываемого материала.
Размерная электрохимическая обработка. К этим методам обработки относят анодно-гидравлическую и анодно-механическую обработку.
Комбинированные методы обработки сочетают в себе преимущества электрофизических и электрохимических методов. Используемые сочетания разнообразны. Например, сочетание анодно-механической обработки с ультразвуковой в некоторых случаях повышает производительность в 20 раз. Существующие электроэрозионно-ультразвуковые станки позволяют использовать оба метода как раздельно, так и вместе.
