Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Числ_мет_ан_ЭС_3329.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.37 Mб
Скачать
  1. Дана задача Коши для обыкновенного дифференциального уравнения I порядка:

Найти численное решение задачи методами Эйлера и Рунге-Кутта при .

ЛИТЕРАТУРА

1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.

2. Численные методы / Лапчик М.П., Рагулина М.И., Хеннер Е.К. М.: Издат. центр «Академия», 2004.

3. Приближенное решение нелинейных уравнений: Метод. указания / КХТИ. Сост. А.В. Садыков, Казань, 1991.

4. Некоторые методы решения задачи аппроксимации: Метод. указания / Казан. гос. технол. ун-т. Сост. А.Г. Багоутдинова, Т.А. Хрузина, Казань, 2000.

Вариант 8

  1. Отделить корни уравнения графически и уточнить один из них методом итераций с точностью =0,001.

  1. Решить систему нелинейных уравнений методом Ньютона с точностью . Начальное приближение определить графическим способом.

  1. Решить систему линейных уравнений с трехдиагональной матрицей методом прогонки

  1. Решить систему линейных уравнений методом итераций с точностью .

  1. Функция задана таблично:

0,4

1,5

2

3

4

2,7

3,8

4,6

5,1

4,8

Построить интерполяционный полином Лагранжа для этой функции. С помощью этого полинома найти приближенное значение функции в точке .

  1. Построить интерполяционный полином Ньютона для функции, заданной таблично:

0,1

0,3

0,5

0,7

0,9

0,1

0,9

1,4

2,4

2,2

С помощью этого полинома найти приближенное значение функции при .

  1. Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при

  1. Функция задана таблично

14,5

16,2

20

25

30

40

5

3,21

3,72

4,81

6,12

7,19

9,36

10,1

Построить аппроксимирующую прямую , используя метод наименьших квадратов (решить сначала вручную, затем в Excel).

  1. Дана задача Коши для обыкновенного дифференциального уравнения I порядка:

Найти численное решение задачи методами Эйлера и Рунге-Кутта при .

ЛИТЕРАТУРА

1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.

2. Численные методы / Лапчик М.П., Рагулина М.И., Хеннер Е.К. М.: Издат. центр «Академия», 2004.

3. Приближенное решение нелинейных уравнений: Метод. указания / КХТИ. Сост. А.В. Садыков, Казань, 1991.

4. Некоторые методы решения задачи аппроксимации: Метод. указания / Казан. гос. технол. ун-т. Сост. А.Г. Багоутдинова, Т.А. Хрузина, Казань, 2000.

Вариант 9

  1. Отделить корни уравнения графически и уточнить один из них методом касательных с точностью =0,001.

  1. Решить систему нелинейных уравнений методом Ньютона с точностью . Начальное приближение определить графическим способом.

  1. Решить систему линейных уравнений с трехдиагональной матрицей методом прогонки

  1. Решить систему линейных уравнений методом итераций с точностью .

  1. Функция задана таблично:

0,7

1,5

2

3,1

4

3

7,2

8,3

9,9

10,6

Построить интерполяционный полином Лагранжа для этой функции. С помощью этого полинома найти приближенное значение функции в точке .