- •Функция задана таблично
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Решить систему нелинейных уравнений методом Ньютона с точностью . Начальное приближение определить графическим способом.
- •Решить систему линейных уравнений с трехдиагональной матрицей методом прогонки
- •Функция задана таблично:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Решить систему нелинейных уравнений методом Ньютона с точностью . Начальное приближение определить графическим способом.
- •Решить систему линейных уравнений с трехдиагональной матрицей методом прогонки
- •Функция задана таблично:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Решить систему нелинейных уравнений методом Ньютона с точностью . Начальное приближение определить графическим способом.
- •Решить систему линейных уравнений с трехдиагональной матрицей методом прогонки
- •Функция задана таблично:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
Построить интерполяционный полином Ньютона для функции, заданной таблично:
-
0,2
0,4
0,6
0,8
1,0
0,7
1,1
1,7
2,5
2,3
С помощью этого полинома найти приближенное значение функции при .
Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
Функция задана таблично
-
1,9
2,7
3,5
4,9
6,1
7,5
8,1
4,1
5,51
7,04
9,87
12,9
14,99
15,97
Построить аппроксимирующую прямую , используя метод наименьших квадратов (решить сначала вручную, затем в Excel).
Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
Найти численное решение задачи методами Эйлера и Рунге-Кутта при .
ЛИТЕРАТУРА
1. Турчак л.И., Плотников п.В. Основы численных методов. – м.: Физматлит, 2002.
2. Численные методы / Лапчик М.П., Рагулина М.И., Хеннер Е.К. М.: Издат. центр «Академия», 2004.
3. Приближенное решение нелинейных уравнений: Метод. указания / КХТИ. Сост. А.В. Садыков, Казань, 1991.
4. Некоторые методы решения задачи аппроксимации: Метод. указания / Казан. гос. технол. ун-т. Сост. А.Г. Багоутдинова, Т.А. Хрузина, Казань, 2000.
Вариант 21
Отделить корни уравнения графически и уточнить один из них методом касательных с точностью =0,001.
Решить систему нелинейных уравнений методом Ньютона с точностью . Начальное приближение определить графическим способом.
Решить систему линейных уравнений с трехдиагональной матрицей методом прогонки
Решить систему линейных уравнений методом итераций с точностью .
Функция задана таблично:
-
0,3
1,5
2
3
4
2,1
2,7
3,4
4,1
3,9
Построить интерполяционный полином Лагранжа для этой функции. С помощью этого полинома найти приближенное значение функции в точке .
Построить интерполяционный полином Ньютона для функции, заданной таблично:
-
0,2
0,4
0,6
0,8
1
1,4
2,1
2,9
3,8
3,6
С помощью этого полинома найти приближенное значение функции при .
Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
Функция задана таблично
-
1
1,5
2
3
4
4,5
5
2,9
4,4
5,9
8,9
11,9
13,4
14,8
Построить аппроксимирующую прямую , используя метод наименьших квадратов (решить сначала вручную, затем в Excel).
