
- •Дискретная случайная величина, закон и функция распределения
- •Числовые характеристики дискретных случайных величин
- •Математическое ожидание и дисперсия дискретной случайной величины. Примеры (основные дискретные распределения).
- •Функция распределения и плотность распределения непрерывной случайной величины и их свойства. Математическое ожидание и дисперсия и их свойства.
- •Свойства функции распределения вероятностей случайной величины
- •Свойства плотности распределения вероятностей
- •Числовые характеристики непрерывных случайных величин
- •Среднее квадратическое отклонение. Мода, медиана, моменты, асимметрия и эксцесс, квантили. Производящие функции.
- •Основные дискретные распределения. (Равномерное, Бернулли, Биномиальное, Геометрическое, Пуассона, Усеченное геометрическое, Гипергеометрическое).
- •Равномерное распределение
- •Биномиальное распределение
- •Геометрическое рапределение
- •Гипергеометрическое рапределение
- •Распределение Пуассона
- •Распределения Бернулли
- •24. Равномерное распределение (непрерывное)
- •Закон распределения вероятностей системы случайных величин
- •Двумерная случайная величина.
Равномерное распределение
Плотность вероятности равномерного распределения сохраняет на интервале (a, b) постоянное значение, вне этого интервала плотность вероятности равна нулю. Исходя из основного свойства плотности вероятности, f(x) = 1/(b-a) на интервале (a;b). Интегральную функцию распределения (вероятность того, что с.в. примет значение меньшее, чем x) находим как интеграл от -∞ до x от плотности вероятности: F(x) = (x-a)/(b-a) Графики плотности вероятности и функции равномерного распределения:
Математическое ожидание равномерного распределения: M(X) = (a + b)/2 Дисперсия равномерного распределения: D(X) = (b - a)2/12 Среднее квадратичное отклонение равномерного распределения: σ(X) = (b - a)/(2√3)
Биномиальное распределение
Биномиальным называют закон распределения дискретной случайной величины X - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события постоянна. Вероятности piвычисляют по формуле Бернулли
Для биномиального распределения: математическое ожидание M(X) = np, дисперсия D(X) = npq, мода np-q ≤ Mo ≤ np+p, коэффициент асимметрии As = (q - p)/√npq, коэффициент эксцесса Ex = (1 - 6pq)/npq В пределе при n→∞ биномиальное распределение по своим значениям приближается к нормальному с параметрами a=np и σ=√npq В пределе при n→∞ и при p→0 биномиальное распределение превращается в распределение Пуассона с параметром λ=np.
Геометрическое рапределение
Производится серия испытаний. Случайная величина - количество испытаний до появления первого успеха (например, бросание мяча в корзину до первого попадания). Закон распределения имеет вид:
Если количество испытаний не ограничено, т.е. если случайная величинв может принимать значения 1, 2, ..., ∞, то математическое ожидание и дисперсию геометрического распределения можно найти по формулам M(X) = 1/p, D(X) = q/p2
Гипергеометрическое рапределение
Имеется N объектов. Из них n объектов обладают требуемым свойством. Из общего количества отбирается m объектов. Случайная величина X - число объектов из m отобранных, обладающих требуемым свойством. Для вычисления вероятностей используются биномиальные коэффициенты (см. число сочетаний). Закон распределения имеет вид:
Распределение Пуассона
Пусть имеется некоторая последовательность событий, наступающих в случайные моменты времени (будем называть это потоком событий). Интенсивность потока (среднее число событий, появляющихся в единицу времени) равна λ. Пусть этот поток событий - простейший (пуассоновский), т.е. обладает тремя свойствами: 1) вероятность появления k событий за определённый промежуток времени зависит только от длины этого промежутка, но не от точки отсчёта, другими словами, интенсивность потока есть постоянная величина (свойство стационарности); 2) вероятность появления k событий в любом промежутке времени не зависит от того, появлялись события в прошлом или нет (свойство «отсутствия последействия»); 3) появление более одного события за малый промежуток времени практически невозможно (свойствоординарности). Вероятность того, что за промежуток времени t событие произойдёт k раз, равна