Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
zachyot_inftekh.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
201.22 Кб
Скачать

стр. 22 из 27

Вопросы к зачету по информатике.

Вопрос №1)

Информация: определение, классификация, свойства.

Информация (от лат),что в переводе обозначает сведение, разъяснение, ознакомление.

Информация — это осознанное сведение об окружающем мире, которые являются объектом хранения, преобразования, передачи и пользования.

Основные виды информации:

- графическая

- звуковая

- текстовая

- числовая

- видеоинформация

Б) Классификация информации

Информацию можно разделить на виды по различным критериям:

по способу восприятия:

  • Визуальная, Аудиальная, Тактильная, Обонятельная, Вкусовая.

по форме представления:

  • Текстовая, Числовая, Графическая, Звуковая

по назначению:

  • Массовая — содержит тривиальные сведения и оперирует набором понятий, понятным большей части социума.

  • Специальная, Секретная — передаваемая узкому кругу лиц и по закрытым (защищённым) каналам. Личная (приватная)

по значению:

  • Актуальная, Достоверная,Понятная —по истинности:

  • Истинная,ложная

Свойства информации:

1. Объективность информации (независима от мнения)

2. Достоверность информации (дезъинформация, искаженная в результате помех)

3. Доступность

4. Полнота

5. Точность (адекватность)

6. Актуальность

7. Полезность.

Вопрос№3)Дисциплина информационные технологии. Разделы дисциплины и направления практического применения информационных технологий.

Информационная технология (ИТ) - совокупность средств и методов сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления (информационного продукта).

Цель информационной технологии - производство информации для ее анализа человеком и принятия на его основе решения по выполнению какого-либо действия.

Практическое приложение методов и средств обработки данных может быть различным, поэтому целесообразно выделить глобальные, базовые и конкретные информационные технологии.

Глобальная информационная технология включает модели методы и средства, формализующие и позволяющие использовать информационные ресурсы общества.

Базовая информационная технология предназначена для определенной области применения (производство, научные исследования, обучение и т.д.).

Конкретные информационные технологии реализуют обработку данных при решении функциональных задач пользователей (например, задачи учета, планирования, анализа). Выделяют следующие виды информационных технологий по функциям применения: расчеты, хранение данных, документооборот, коммуникации, организация коллективной работы, помощь в принятии решений. По типу обрабатываемых данных различают текстовые, табличные, графические данные, мультимедийные, геоинформационные, управленческие технологии.

Распределенные информационные технологии. В зависимости от способа передачи данных можно выделить сетевые и несетевые информационные технологии. Сетевые информационные технологии обеспечиваются сетевой операционной системой. К ним относятся электронная почта, распределенная обработка данных, информационные хранилища, электронный документооборот, технологии Intranet, видеоконференции. По способу объединения выделяют интегрированные информационные технологии и интегрированные информационные системы. В составе основных практических операций по обработке информации, таких как создание, накопление, преобразование, передача, поиск, распределение, вывод и др., можно указать ряд автономных типовых функций обработки информации. К ним, в частности, относятся:

- математические вычисления;

- аналитические и символьные преобразования;

- математическое моделирование;

- алгоритмизация;

- программирование;

- обработка текстовой информации (занесение, изменение, контекстный поиск и др.);

- обработка табличной информации (занесение, вычисления и др.);

- деловая графика (диаграммы, схемы и др.);

- машинная графика (занесение, преобразование, выделени и др.);

- обработка изображений (ввод)

Вопросы №4)и№26) История развития вычислительных систем (принцип Фон Неймана) Эволюция и поколения ЭВМ.

Эволюция ЭВМ: 1623г - Шиккард изобретает автоматическое устройство для выполнения операций сложения 1642г - Блез Паскаль - суммирующее устройство 1673г - Лейбниц - механический калькулятор с функциями умножения и деления 1945г - Фон Нейман - общие принципы функционирования универсальных вычислительных устройств 1949г - Морис Уилкинс - первый компьютер дальше у меня пропущено в конспекте по этому вопросу, найди если не трудно, ибо в интернете информация совершенно разная в разных источниках.

ХАРАКТЕРИСТИКИ

П О К О Л Е Н И Я Э В

I

II

III

IV

М

Годы применения

1946-1958

1958-1964

1964-1972

1972 - настоящее время

Основной элемент

Эл.лампа

Транзистор

ИС

БИС

Количество ЭВМ в мире (шт.)

Десятки

Тысячи

Десятки тысяч

Миллионы

Носитель информации

Перфокарта, Перфолента

Магнитная Лента

Диск

Гибкий и лазерный диск

Размеры ЭВМ

Большие

Значительно меньше

Мини-ЭВМ

микроЭВМ

Средства связи пользователя с ЭВМ

Пульт управления и перфокарты

Перфокарты и перфоленты

Алфавитно- цифровой тер Монохромный графический дисплей, клавиатура минал

Цветной + графический дисплей, клавиатура, “мышь” и др

I поколение

(до 1955 г.)

Все ЭВМ I-го поколения функционарировали на основе электронных ламп, что делало их ненадежными - лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.

Притом для каждой машины использовался свой язык программирования. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства, оперативные запоминающие устройства были реализованы на основе ртутных линий задержки электроннолучевых трубок. II поколение

(1958-1964)

В 1958 г. в ЭВМ были применены полупроводниковые транзисторы, изобретённые в 1948 г. Уильямом Шокли, они были более надёжны, долговечны, малы, могли выполнить значительно более сложные вычисления, обладали большой оперативной памятью. Во II-ом поколении компьютеров дискретные транзисторные логические элементы вытеснили электронные лампы. В качестве носителей информации использовались магнитные ленты ("БЭСМ-6", "Минск-2","Урал-14") и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски.

В качестве программного обеспечения стали использовать языки программирования высокого уровня. Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

III поколение

(1964-1972)

В 1960 г. появились первые интегральные системы (ИС), которые получили широкое распространение в связи с малыми размерами, но громадными возможностями. ИС - это кремниевый кристалл, площадь которого примерно 10 мм2. 1 ИС способна заменить десятки тысяч транзисторов. 1 кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. А компьютер с использованием ИС достигает производительности в 10 млн. операций в секунду. Машины третьего поколения — это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.

Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Примеры машин третьего поколения — семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др.

IV поколение

(с 1972 г. по настоящее время)

Четвёртое поколение — это теперешнее поколение компьютерной техники, разработанное после 1970 года.

Впервые стали применяться большие интегральные схемы (БИС). В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма (0,635 см2.). БИСы применялись уже в таких компьютерах, как “Иллиак”, ”Эльбрус”, ”Макинтош ”. Быстродействие таких машин составляет тысячи миллионов операций в секунду. Емкость ОЗУ возросла до 500 млн. двоичных разрядов. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов.

C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.

Персональный компьютер

ПК - настольный или портативный компьютер, который использует микропроцессор в качестве единственного центрального процессора, выполняющего все логические и арифметические операции. Эти компьютеры относят к вычислительным машинам четвертого и пятого поколения. Помимо ноутбуков, к переносным микрокомпьютерам относят и карманные компьютеры — палмтопы. Основными признаками ПК являются шинная организация системы, высокая стандартизация аппаратных и программных средств, ориентация на широкий круг потребителей.

1.1. Принципы фон Неймана.

В 1946 году Нейман предложил ряд новых идей организации ЭВМ, в том числе концепцию хранимой программы, он предложил записывать и хранить в памяти алгоритм вычислений вместе с данными.

Принцип однородности памяти

Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы. Распознать их можно только по способу использования; то есть одно и то же значение в ячейке памяти может использоваться и как данные, и как команда, и как адрес в зависимости лишь от способа обращения к нему. Это позволяет производить над командами те же операции, что и над числами, и, соответственно, открывает ряд возможностей. Так, циклически изменяя адресную часть команды, можно обеспечить обращение к последовательным элементам массива данных. Такой прием носит название модификации команд и с позиций современного программирования не приветствуется. Более полезным является другое следствие принципа однородности, когда команды одной программы могут быть получены как результат исполнения другой программы. Эта возможность лежит в основе трансляции — перевода текста программы с языка высокого уровня на язык конкретной вычислительной машины.

Принцип адресности

Структурно основная память состоит из пронумерованных ячеек, причем процессору в произвольный момент доступна любая ячейка. Двоичные коды команд и данных разделяются на единицы информации, называемые словами, и хранятся в ячейках памяти, а для доступа к ним используются номера соответствующих ячеек — адреса.

Принцип программного управления

Все вычисления, предусмотренные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов — команд. Каждая команда предписывает некоторую операцию из набора операций, реализуемых вычислительной машиной. Команды программы хранятся в последовательных ячейках памяти вычислительной машины и выполняются в естественной последовательности, то есть в порядке их положения в программе. При необходимости, с помощью специальных команд, эта последовательность может быть изменена. Решение об изменении порядка выполнения команд программы принимается либо на основании анализа результатов предшествующих вычислений, либо безусловно.

Принцип двоичного кодирования

Согласно этому принципу, вся информация, как данные, так и команды, кодируются двоичными цифрами 0 и 1. Каждый тип информации представляется двоичной последовательностью и имеет свой формат. Последовательность битов в формате, имеющая определенный смысл, называется полем. В числовой информации обычно выделяют поле знака и поле значащих разрядов. В формате команды можно выделить два поля: поле кода операции и поле адресов.

Вопрос № 5 Энергозависимая память ПК. Виды назначение и характеристика

Эне́ргозави́симая па́мять— компьютерная память, которая требует постоянного использования электропитания для возможности удерживать записанную на неё информацию. Эта особенность является ключевым отличием энергозависимой памяти от энергонезависимой — последняя сохраняет записанную на неё информацию даже после прекращения подачи электропитания на неё. Энергозависимая память также изредка называется вре́менной памятью. Подавляющее большинство современных видов оперативной памяти с произвольным доступом являются энергозависимыми. Сюда относятся динамическая (DRAM) и статическая (SRAM) память с произвольным доступом. К энергозависимой внутренней памяти относятся оперативное запоминающее устройство (ОЗУ), видеопамять и кэш-память. В оперативном запоминающем устройстве в двоичном виде запоминается обрабатываемая информация, программа ее обработки, промежуточные данные и результаты работы. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Это отражено в англоязычном названии ОЗУ – RAM (Random Access Memory – память с произвольным доступом). Доступ к этой информации в ОЗУ осуществляется очень быстро.

Эта память составлена из сложных электронных микросхем и расположена внутри корпуса компьютера. Часть оперативной памяти отводится для хранения изображений, получаемых на экране монитора, и называется видеопамять. Чем больше видеопамять, тем более сложные и качественные картинки может выводить компьютер. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM. Кэш-память является промежуточным запоминающим устройством (буфером). Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора и внешняя, размещаемая на материнской плате.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]