- •Ответы на теоретические вопросы программы экзамена по математике за 3 семестр
- •1. Матрицы. Действия над матрицами, их свойства
- •Определители второго и третьего порядка
- •Некоторые свойства определителей
- •3. Решение системы трех линейных уравнений с тремя неизвестными методом Крамера
- •Решение систем трех линейных уравнений с тремя переменными методом Гаусса
- •4. Определение комплексного числа. Действия над комплексными числами в алгебраической форме. Геометрическое представление комплексных чисел
- •Геометрическое представление комплексных чисел
- •5. Алгебраическая, тригонометрическая и показательная формы комплексного числа. Переход от одной формы комплексного числа к другой
- •6. Действия над комплексными числами в тригонометрической и показательной формах
- •7. Множества. Операции над множествами, их свойства
- •Операции над множествами
- •Свойства операций над множествами
- •8. Отношения. Свойства отношений
- •Свойства бинарных отношений
- •Типы отношений
- •Свойства пределов
- •Бесконечно малые и бесконечно большие функции при и при ., зависимость между ними
- •Правила раскрытия неопределенностей.
- •Замечательные пределы
- •Непрерывность функции в точке и на промежутке. Непрерывность суммы, произведения, частного двух функций
- •Свойства непрерывных функций
- •Типы точек разрыва функции
- •Определение производной Примеры вычисления производных на основе определения
- •Правило дифференцирования суммы двух функций
- •Правило дифференцирования произведения двух функций
- •Правило дифференцирования частного двух функций
- •Правило дифференцирования сложной функции
- •Формулы дифференцирования основных элементарных функций
- •Вторая производная. Физический смысл первой и второй производных
- •Геометрический смысл производной
- •Уравнение касательной к графику функции
- •Дифференциал функции. Геометрический смысл дифференциала
- •Применение дифференциала функции для приближенных вычислений
- •Производные высших порядков. Формула Тейлора
- •Типы монотонности функции. Достаточные условия монотонности функции
- •Точки минимума и точки максимума функции. Необходимое условие экстремума функции
- •Точки минимума и точки максимума функции. Достаточные условия экстремума функции
- •Исследование функции с помощью производных на выпуклость и точки перегиба графика
- •Исследование функции на асимптоты графика
- •Нахождение наибольшего и наименьшего значения функции на данном промежутке
- •Первообразная. Теорема о множестве производных данной функции
- •Неопределенный интеграл, его свойства
- •Свойства неопределенного интеграла
- •Формулы интегрирования
- •Методы вычисления неопределенных интегралов. Интегрирование по частям
- •Определенный интеграл, его свойства
- •Свойства определённого интеграла
- •Криволинейная трапеция, ее площадь. Геометрический смысл определенного интеграла
- •Вычисление определенного интеграла по формуле Ньютона-Лейбница
- •Вычисление определенного интеграла подстановкой
- •Вычисление определенного интеграла по частям
- •Задачи, приводящие к дифференциальным уравнениям
- •Основные понятия
- •Простейшие дифференциальные уравнения первого порядка
- •Дифференциальные уравнения первого порядка с разделяющимися переменными
- •Линейные однородные дифференциальные уравнения первого порядка
- •Простейшие дифференциальные уравнения второго порядка
- •Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •10. Логические высказывания. Основные логические операции над высказываниями, их свойства
- •Основные свойства числовых функций
- •§2. Простейшие преобразования графиков функций
- •9. Основные понятия теории графов граф, вершина графа, ребро графа, петля, ориентированный и неориентированный граф, маршрут, цепь, цикл
Основные свойства числовых функций
Определение 3.
Функция
называется четной,
если для любого значения x,
взятого из области определения функции,
значение
тоже принадлежит области определения
и выполняется равенство
.
Определение 4.
Функция
называется нечетной,
если для любого значения x,
принадлежащего области определения,
значение
тоже принадлежит области определения
и выполняется равенство
.
Замечание 1. Если функция является четной, то ее график симметричен (сам себе) относительно оси ординат. Обратное утверждение тоже верно, то есть если график функции симметричен относительно оси ординат, то функция является четной.
Замечание 2. Если функция является нечетной, то ее график симметричен (сам себе) относительно начала координат. Обратное утверждение тоже верно, то есть если график функции симметричен относительно начала координат, то функция является нечетной.
Замечание 3. Существует
единственная функция,
являющаяся одновременно четной и
нечетной. Это функция
.
Графиком этой функции является ось
абсцисс. Она симметрична (сама себе) и
относительно оси ординат и относительно
начала координат.
Замечание 4. Функция может не быть ни четной, ни нечетной. В этом случае график ее не является симметричным относительно оси ординат, но может иметь другие оси симметрии. График не является также симметричным относительно начала координат, хотя может иметь другие центры симметрии.
Примеры:
,
,
— четные функции;
,
,
— нечетные функции;
,
— не четные и не нечетные функции.
Определение 5. Функция называется возрастающей на данном промежутке, если для любых двух значений аргумента, взятых из этого промежутка, большему значению аргумента соответствует и большее значение функции.
Определение 6. Функция называется убывающей на данном промежутке, если для любых двух значений аргумента, взятых из этого промежутка, большему значению аргумента соответствует меньшее значение функции.
Определение 7. Функция называется постоянной на данном промежутке, если для всех значений аргумента, взятых из этого промежутка, функция принимает одно и то же значение.
Определение 8. Функция называется монотонной на данном промежутке, если на этом промежутке она только возрастает, или только убывает, или является постоянной.
Примеры:
Функция
возрастает на промежутке
.
Функция
убывает на промежутках
и
.
Функция , убывает на промежутке и возрастает на промежутке .
Определение 9.
Функция f(x)
называется ограниченной,
если существует такое положительное
число m,
что для всех значений аргумента х,
взятых из области определения, выполняется
условие
.
Примеры:
функции
,
,
являются ограниченными, так как
,
,
.
Функции , не являются ограниченными, так как принимают значения, большие любого наперед заданного числа m.
Определение 10.
Функция
называется периодической,
если существует число
такое, что для любого значения x,
взятого из области определения функции,
выполняются равенства:
и
.
Число T называется периодом функции .
Замечание 1. Если
число Т является периодом функции
,
то и любое число Т∙n,
n
Z,
тоже является ее периодом, поэтому
обычно указывают наименьший положительный
период функции.
Замечание 2. График периодической функции состоит из повторяющихся частей, поэтому достаточно построить график на любом промежутке длиной в период, а затем повторить построенный отрезок графика нужное число раз.
Примеры:
функции
и
имеют наименьший положительный период
2,
функции
и
имеют наименьший положительный период
.
