Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika_wpor_2.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
279.55 Кб
Скачать

35.Шредингер теңдеуі

Шредингер теңдеуі, толқындық теңдеу – релятивистік емес кванттық механиканың негізгі теңдеуі. Мұны алғаш рет Э.Шредингер тапты (1926). Ньютонның механикадағы қозғалыс теңдеулері мен Максвелл электрдинамикадағы теңдеулері классик. физикада қандай түбегейлі рөл атқарса, Шредингер теңдеуі кванттық механикада сондай рөл атқарады. Шредингер теңдеуі толқындық функция (пси функция) арқылы кванттық нысандар күйінің уақыт бойынша өзгеруін сипаттайды. Егер бастапқы кездегі толқындық функцияның мәні 0 белгілі болса, онда Шредингер теңдеуін шешу арқылы осы функцияның кез келген уақыт мезетіндегі мәнін (x, y, z, t) табуға болады. V(x, y, z, t) потенциалы тудыратын күштің әсерінен қозғалатын, массасы m бөлшек үшін Шредингер т. мына түрде жазылады: , мұндағы d2/dx2+d2/dy2+d2/dz2 Лаплас операторы, =h/2 – Планк тұрақтысы. Бұл теңдеу Шредингердің уақытқа тәуелді теңдеуі деп аталады. Егер V уақытқа тәуелсіз болса, онда Шредингер теңдеуі төмендегі түрде жазылады: , мұндағы Е-кванттық жүйенің толық энергиясы. Бұл теңдеу Шредингердің стационер күйдегі теңдеуі деп аталады. Кеңістіктің шектелген аумағында қозғалатын кванттық жүйелер (бөлшектер) үлесі Шредингер теңдеуінің шешімі энергияның кейбір дискретті (үздікті) мәндерінде n1, n2, …, nn, … ғана болады; бұл қатардың мүшелері бүтін кванттық сандармен (n) нөмірленеді. Әрбір n-нің мәніне n (x, y, z) толқындық функциясы сәйкес келеді. Толқындық функцияның толық жиынтығы n1, n2, …, n, белгілі болса, кванттық жүйенің барлық параметрлерін анықтауға болады. Шредингер теңдеуі табиғаттағы микробөлшектердің бөлшектік-толқындық қасиеттерін матем. өрнек арқылы толық сипаттайды және ол сәйкестік принциптерін қанағаттандырады. Бұл теңдеу шекті жағдайда (де Бройль толқынының ұзындығы қарастырылып отырған қозғалыстың өлшемдерінен әжептәуір кіші болғанда) бөлшектердің қозғалысын классик. механика заңдарымен сипаттауға мүмкіндік береді. Шредингер теңдеуінен қозғалысты траектория арқылы сипаттайтын классик. механика теңдеулеріне ауысу толқындық оптикадан геометрик. оптикаға ауысуға ұқсас. Матем. көзқарас бойынша Шредингер теңдеуі толқындық теңдеуге жатады және өзінің құрылымы бойынша периодты әсер ететін жіңішке ішектің тербелісін сипаттайтын теңдеуге ұқсас. Бірақ ішектің тербелісін сипаттайтын теңдеудің шешімі берілген уақыт мерзіміндегі ішектің геометр. пішінін беретін болса, ал Шредингер теңдеуі шешімінің тікелей физикалық мағынасы болмайды. Дегенмен толқындық функция квадратының n(x, y, z, t)/2 физикалық мағынасы бар. Ол бөлшектің температурасы ӘС уақыт мезетіндегі координаттары x, y, z, нүктенің төңірегінде бірлік көлемде болу ықтималдылығын анықтайды. Ықтималдықтарды қосу теоремасына сүйеніп микробөлшекті температурасы ӘС уақыт кезеңінде шекті V көлемде мына өрнек арқылы табуға болады: мұндағы W – микробөлшектің V көлемде орналасу ықтималдылығы.

36.Толқындық функция

Бұған дейін айтып кеткеніміздей, XX ғасырдың басында ашылған бірқатар құбылыстар мен тәжірибелік айғақтар классикалық физиканың негізгі тұжырымдарымен қайшылыққа келіп, оларды зерделеу нәтижесінде жаңа, кванттық көзқарас дами бастады. Микробөлшектердің корпускулалық-бөлшектік қасиеттерінің анықталуы, атомдық физика саласындағы зерттеулер классикалық физика заңдарын микробөлшектерге қолдануға қойылатын шектеулерді айқындады. Мұның өзі микробөлшектердің қозғалыс және өзара әсерлесу заңдарын сипаттайтын кванттық механиканың туындап, дамуына себепкер болды.

Релятивтік емес (баяу бөлшектерге арналған) кванттық механиканың негізгі теңдеуін 1926 жылы Э . Шредингер тұжырымдап жазды. Бұл теңдеуді біз қарастырмаймыз, тек оның негізгі сипаттамасы мен салдарларын талдау жеткілікті.

Бұл — толқындық теңдеу және одан тәжірибелерде бақыланатын бөлшектердің толкындық қасиеттері шығады. Кванттық механикада бөлшектің күйін толқындық функциямен сипаттайды. Толқындық функция — координаталар мен уақыттың комплекстік функциясы, оның айқын түрі Шредингер теңдеуінің шешуінен шығады да, соңында бөлшекке әрекет ететін күштердің сипатымен анықталады.

Кеңістіктің берілген нүктесіндегі де Бройль толқындарының интенсивтігі (амплитудасының квадраты) осы нүктеге түсетін бөлшектердің санын анықтайтыны туралы жоғарыда айтқанбыз. Ал, егер жеке бөлшек қарастырылса, оған сәйкес де Бройль толқынының интенсивтігі бөлшектің осы нүктенің маңына түсу ықтималдығын білдіреді. Кванттық механиканың ең маңызды ерекшелігі — микробөлшектің күйін ықтималдылық тұрғысынан сипаттау. 1926 жылы М. Борн ықптималдық амплитпудасы деп аталатын шама толкындық заңдылықпен өзгереді деген болжам айтты, бұл шаманы толқындың функция немесе ψ(пси)- функциясы деп атайды.

Толқындық функцияның модулінің квадраты берілген уақыт мезетіндегі бөлшектің кеңістіктің элементар d V аумағында болу ықтималдығын анықтайды:

dW=|ψ|2dV

Басқаша айтқанда, де Бройль толқындарының интенсивтігі толқындық функция модулінің квадратымен анықталады. Егер кеңістіктің шексіз үлкен аумағын қарастырсақ, бөлшек міндетті түрде оның бір жерінде орналасуы керек, ал айқын оқиғаның ықтималдығы бірге тең. Олай болса,

ʃ|ψ|2dV=1

Соңғы өрнек толқындық функцияны нормалау шарты болып табылады.

Қорыта айтқанда, толқындық функция микробөлшек күйінің негізгі сипаттамасы бола отырып, оның күй параметрлерінің орташа мәндерін есептеуге мүмкіндік береді.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]