Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кунце - Технология пива и солода.docx
Скачиваний:
12
Добавлен:
01.07.2025
Размер:
34.17 Mб
Скачать

3.4.2.3.2. Кипячение при низком избыточном давлении с использованием внутреннего кипятильника

Современные сусловарочные котлы теперь очень часто оснащаются внутренним кипятильником (перколятором) (рис. 3.72).

Внутренний кипятильник представляет собой кожух отрубный теплообменник, расположенный в сусловарочном котле. Через вертикальные трубы (1) кипятильника поднимается сусло, нагреваемое паром, подводимым сверху в межтрубное пространство. При этом пар (6) охлаждается и конденсируется (7).

В сужающемся конусе (5) кипящее сусло ускоряется и, поднимаясь над уровнем поверхности сусла в котле, распределяется по этой поверхности широким веером с помощью распределительного экрана (4), что способствует хорошему испарению и в то же время обеспечивает постоянство уровня сусла в котле.

Так как температура сусла при кипении повышается до 103-106°С, то температура (а вместе с ней и давление) горячего пара должна быть существенно выше. Она составляет:

  • при нагреве - около 140-145°С (= 3,8-4,3 бар, см. раздел 10.2.2.1) и

  • при кипении - около 130°С (= 2,8 бар).

В нагревательных трубах кипятильника сусло движется снизу с температурой ниже 100°С и по мере подъема оно нагревается (рис. 3.72а).

При этом очень скоро на внутренней стенке труб образуется:

  • зона начала образования пузырьков пара (2), которая при дальнейшем подъеме переходит

  • в зону неполного парообразования (3) и наконец в более широкой зоне

  • происходит парообразование во всем объеме сусла (4), тогда как снаружи пар отдает свою энергию парообразования (энтальпию) и конденсируется, слой конденсата, стекающего вниз, становится все более толстым, все в большей степени препятствуя теплопередаче.

При парообразовании во всем объеме кипящего сусла большая часть воды переходит в пар, который занимает значительно больший объем, чем вода, из которой он образовался. Это сусло с увеличившимся объемом попадает в сужающийся конус, расположенный над нагревательными трубами, поднимается над уровнем сусла в котле и затем распределяется по поверхности сусла с помощью распределительного экрана. Этот экран, который может иметь различную конструкцию, устанавливается так, чтобы обеспечить полную циркуляцию сусла в котле, без образования мертвых зон.

Очень высокая разность температур способствует хорошему кипению, но создает и проблемы: в то время, как у выносного кипятильника гарантируется постоянная циркуляция всего содержимого котла, у внутреннего кипятильника возникают неравномерности в его работе, особенно заметно проявляющиеся на стадии нагрева

  • При нагреве сусло втягивается в трубы кипятильника из самых нижних слоев котла и после нагрева в кипятильнике оно распределяется на поверхности сусла. Из-за этого в котле возникает расслоение сусла с температурным перепадом до 20 градусов, которое выравнивается лишь через 15-20 мин (рис. 3.72б). Из-за этого имеет место неравномерная обработка сусла, включая неравномерную изомеризацию горьких веществ и неравномерное испарение ДМС.

  • При нагреве сусла до температуры кипения еще очень велика разность температур между паром и выходящим суслом. Из-за этого в данной области происходит сначала карамелизация и затем пригорание

  • Более холодное сусло постоянно поступает в кипятильник снизу, и выходит вверху лишь тогда, когда оно начинает кипеть. Но при парообразовании объем жидкости существенно увеличивается. Из-за этого объемный расход сусла временно тормозится, и возникает сильная пульсация закипающего сусла в ходе его нагрева до температуры кипения.

Из одного кг (= 1 л) воды получается при испарении около 1700 л водяного пара той же температуры. Это неизбежно вызывает в трубах кипятильника значительное гидродинамическое сопротивление и пульсацию, так как кипящее сусло и образующийся пар не могут так быстро уходить вверх. Это гидродинамическое сопротивление тем больше, чем уже условный проход труб кипятильника.

Чтобы иметь возможность бороться с этими проблемами, были предложены, особенно в последнее время, некоторые мероприятия. К ним относятся:

  • применение циркуляционного насоса, что бы путем принудительной циркуляции быстрее достигнуть равномерней темпера туры сусла во всем котле, для чего можно использовать насос для выгрузки горячего охмеленного сусла, который должен иметь частотное регулирование и конструкцию, обеспечивающую бережную перекачку сусла и

  • исключать во время нагрева сусла возникновение температурного расслоения сусла внутри котла, а также

  • поддерживать во время кипения естественную циркуляцию.

К этому также относится:

  • оптимизация стадий процесса кипячения («ароматическое кипячение») путем гибкого управления объемным расходом циркулирующего сусла, а также температурой и давлением пара;

  • применение распределительного экрана для сусла с целью обеспечения максимального испарения.

При оптимизированном по стадиям працесса ароматическом кипячении (система кипячения «Экотерм» (Ecotherm), фирма Steinecker, г. Фрайзинг) путем использования системы управления добиваются того, чтобы для каждого момента нагрева и кипения можно было предварительно выбрать свою температуру теплоносителя и объемный расход циркулирующего сусла и установить желаемые величины для готового сусла в узких пределах. Тем самым возможно путем быстрого или замедленного нагрева и дифференцирования стадий процесса кипячения менять характер отдельных типов пива, влияя на расщепление предшественника ДМС и образуя ароматические вещества при кипячении за счет изменения температуры теплоносителя.

В соответствии с этим процесс кипячения продолжительностью 70 мин делится на 3 стадии:

  • 20 мин, благодаря высокой интенсивности нагрева быстро переходит в нерастворимое состояние легко коагулируемый азот,

  • 30 мин, при более низкой интенсивности нагрева продолжается расщепление предшественника ДМС при постоянной температуре в котле (99°С) и экономится тепловая энергия;

  • 20 мин, повышается интенсивность нагрева с целью корректировки содержания азотистых веществ путем форсирования процесса выпадения белков.

П рименение отражающего экрана для распределения сусла служит в первую очередь удалению ароматических компонентов, улетучивающихся вместе с водяным паром, в особенности расщеплению предшественника ДМС и удалению свободного ДМС. Конструкция распределительного экрана приобретает здесь большое значение.

Двойной экран (тип Steinecker) У нового двойного экрана (рис. 3.72в) при более низкой температуре теплоносителя (около 130°С) (а, правая сторона) сусло сжимается прежде всего у нижнего экрана (4) и с помощью плавного поворота направляется во внешнюю треть котла, чем обеспечивается хорошее испарение, тогда как от верхнего экрана (5) истекает лишь небольшая часть сусла с меньшей скоростью. Эта стадия процесса обеспечивает главным образом испарение нежелательных ароматических веществ.

При максимальной интенсивности нагрева (температура теплоносителя около 145°С) (b, левая сторона) кипящее сусло сжимается и направляется через оба экрана, выходя как из внутренней (3), так и из наружной выпускной трубы (2). При этом более плоский нижний зонтик экрана мешает верхнему зонтику отбрасывать сусло к стенке котла, что привело бы к нежелательному воздействию касательных напряжений на сусло.

Двухфазный экран (тип Huppmann)

Д вухфазный экран (рис. 3.72г) разделен на сегменты в двух плоскостях.

Благодаря плавному повороту в рассекателе экрана поток кипящего сусла разделяется на сегменты и разбрызгивается в двух плоскостях, расположенных друг над другом, вследствие чего достигается очень хороший эффект испарения. Одновременно сусло получает небольшое закручивание благодаря соответствующей форме сегментов экрана. Видимая на рисунке вверху резьба показывает, что экран можно переставлять по высоте, что делается у всех экранов, так как необходимо устанавливать оптимальную высоту.

Длительность процесса и давление при кипячении

В настоящее время процесс кипячения сусла продолжается, как правило, 60-70 мин и при «классическом» кипячении с низким избыточным давлением он протекает следующим образом (рис. 3.73):

  • нагрев до 100°С приблизительно за 15 мин;

  • предварительное кипячение при 100°С около 10 мин;

  • нагрев до 102-104°С за 10-15 мин;

  • кипячение под давлением при 102-104°С около 15-30 мин;

  • сброс давления и понижение температуры до 100°С приблизительно за 15 мин;

  • последующее кипячение при 100°С около 10 мин

Динамическое кипячение при низком избыточном давлении (фирма Huppman, г. Китцинген)

При динамическом кипячении с низким избыточным давлением нет длительной стадии выдерживания при избыточном давлении, а постоянно производится поочередное повышение и сброс давления (рис. 3.72д).

Обычно начинают с 10-15-минугной стадии предварительного кипячения, которая должна служить главным образом для коагуляции белка и изомеризации хмелевых смол. В конце этой стадии клапан вытяжной трубы для вторичного пара закрывается и давление в котле поднимается на 300-350 мбар. Температура повышается до 104-105°С и поддерживается в течение 3-5 мин

Затем давление снижается до 100-150 мбар, а температура соответственно понижается до 101-102°С. Чтобы ускорить снижение давления, подвод свежего пара перекрывается и водяной регулирующий контур накопителя тепловой энергии (см. гл. 3.4.25.3) включается на полную мощность. После стадии сброса давления продолжительностью 3-5 мин вновь открывают подачу пара и весь процесс повторяется. Можно производить последовательно друг за другом до 6 таких повышений и сбросов давления.

Частое повторение сбросов давления обеспечивает существенное повышение интенсивности и глубины испарения летучих веществ сусла. Более интенсивное кипячение приводит к большей термической нагрузке на сусло, которое однако в этом случае не влияет на старение пива

В качестве преимуществ внутреннего кипятильника можно назвать:

  • простую и надежную конструкцию в сочетании с большим сроком эксплуатации;

  • не требуется дополнительной электроэнергии, поскольку нет принудительной перекачки;

  • беспроблемное применение безразборной мойки (CIP);

  • отсутствие необходимости в изоляции кипятильннка;

  • отсутствие необходимости в дополнительных площадях.

В качестве недостатков следует отметить следующие:

  • при нагреве до температуры кипения возникает стадия нестабильной работы, которая воздействует неблагоприятно на со став сусла, этот существенный недостаток можно устранить только используя перекачку насосом (см. выше);

  • трубы внутреннего кипятильника быстрее загрязняются из-за высоких температур при нагреве сусла и из-за более низкой скорости течения в данный момент времени;

  • конструктивно возможная площадь выбора поверхности нагрева ограничена определенными пространственными пределами.

Решение о выборе между внутренним и выносным кипятильниками является в основном вопросом философии пивоваренной компании, так как существенной разницы между этими двумя системами нет.

Для устранения стадии нестабильности, кроме описанной выше системы принудительной циркуляции с помощью насоса имеется еще возможность обогревать сусло с помощью внутреннего трубного перколятора, работающего в комбинации с мешалкой (рис. 3.73).

Обогреватель такой конструкции иногда используется для заторных емкостей с целью обеспечения щадящего перемешивания затора при высокой интенсивности нагрева

Комбинированные котлы-вирпулы

Если дно сусловарочного котла сделано плоским, то его можно использовать также в качестве вирпула (котел-вирпул). Для таких котлов лучше подходят выносные кипятильники, так как для работы вирпула нежелательно наличие встроенных деталей. При использовании таких котлов с внутренним кипятильником следует учитывать, что от кипятильника возникнут существенные помехи для кругового вращения сусла (см. раздел 3.8.3), что может привести к плохому отделению взвесей горячего сусла.