- •Основные дозиметрические величины
- •Сцинтилляционный метод дозиметрии
- •Методика эксперимента
- •Порядок выполнения работы
- •Обработка результатов
- •Литература
- •Измерение плотностей потоков нейтронов и мощностей доз
- •Метод сечений выведения в расчете защиты от нейтронов
- •Методика эксперимента
- •Порядок выполнения работы Определение мощности эквивалента дозы нейтронов
- •Измерение сечения выведения нейтронов
- •Обработка результатов Определение мощности эквивалента дозы
- •Контрольные вопросы
- •Работа №3. Термолюминесцентный метод индивидуального дозиметрического контроля внешнего облучения
- •Методы индивидуального дозиметрического контроля внешнего облучения. Для индивидуальной дозиметрии применяются детекторы ионизирующего излучения, основанные на различных физических методах.
- •Принцип термолюминесцентного метода дозиметрии
- •Порядок выполнения работы Облучение детекторов в облучателе
- •Руками таблетки брать нельзя !
- •Измерение показаний дозиметров
- •Контрольные вопросы
- •Литература
- •Работа № 4. Определение концентрации естественных радиоактивных аэрозолей в воздухе
- •Радиоактивные аэрозоли в окружающей среде
- •Искусственные аэрозоли
- •Измерение концентрации и методы осаждения радиоактивных аэрозолей
- •Методика эксперимента
- •Выполнение лабораторной работы
- •Обработка результатов Рассчитать концентрации радиоактивных аэрозолей в воздухе с и с по следующим формулам:
- •Контрольные вопросы
- •Литература
- •Работа №5. Измерение факторов накопления гамма-излучения в различных средах
- •Распределение рассеянного в среде излучения
- •Контрольные вопросы
- •Литература
- •Содержание
- •2 49035, Г.Обнинск, Студгородок, 1.
Искусственные аэрозоли
Источником поступления искусственных радиоактивных аэрозолей в атмосферу могут служить предприятия ядерной энергетики. Для работы атомной электрической станции необходимо, чтобы существовал целый комплекс крупных, независимых друг от друга производств, таких как добыча и обогащение урановой руды, переработка уранового сырья в ядерное топливо, производство твэлов, переработка отработавшего топлива с целью дальнейшего использования, транспортировка и захоронение образующихся радиоактивных отходов.
На всех этапах ядерного топливного цикла (ЯТЦ) происходит выброс радиоактивных продуктов в окружающую среду, однако интенсивность выбросов и радиационное воздействие на человека на разных этапах ЯТЦ различна. По степени выделения радионуклидов в окружающую среду, при существующем уровне технологии предприятия ЯТЦ располагаются в следующей последовательности: радиохимическое производство (~ 95 %), АЭС (~ 5 %), добыча и переработка урановой руды (~ 0,04 %), изготовление твэлов (~ 310-5 %).
Работа ядерного реактора. При ядерной реакции деления в твэлах образуется большое число (около 600) радионуклидов – продуктов деления, которые через микротрещины в оболочках твэлов могут выходить наружу, в теплоноситель, а затем и в атмосферный воздух. Выходя из микротрещин твэлов, короткоживущие благородные газы продуктов деления распадаются и образуют мелкодисперсные радиоактивные аэрозоли: например, газообразный 137Хе с периодом полураспада 3,9 мин переходит в образующий радиоактивный аэрозоль 137Cs с периодом полураспада 30 лет, газообразный 90Kr (T1/2 = 33 с) в создающий радиоактивный аэрозоль 90Sr (T1/2 = 28 лет), газообразный 140Хе (T1/2 = 16 с) в образующий радиоактивный аэрозоль 140Ва (T1/2 = 13 сут.) и т.д.
Д
ругим
источником радиоактивных аэрозолей на
АЭС являются радионуклиды, получающиеся
при активации нейтронами примесей
теплоносителя первого контура и продуктов
коррозии конструкционных материалов
активной зоны и внутренних поверхностей
трубопроводов и различного оборудования
первого контура, омываемого теплоносителем.
При актива-ции этих продуктов в
теплоносителе образуются такие
радионуклиды, как 51Cr,
54Mn,
58Со,
59Fe,
60Со,
65Zn,
95Zr,
110mAg.
Такие аэрозоли чаще всего появляются в воздухе помещений АЭС при плановых ремонтах и перегрузках топлива. При этих операциях (особенно при различных работах по зачистке, сварке и шлифовке труб) суммарная концентрация аэрозолей, обусловленных активацией, в реакторном помещении достигает 70 - 3000 Бк/м3. Аэрозоли, возникающие при таких работах, крупнодисперсные (6 12 мкм), и 60 - 80 % из них задерживаются в верхних дыхательных путях.
Типичный состав радиоактивных аэрозолей по активности радионуклидов в выбросе АЭС с РБМК-1000, проработавшей несколько лет представлен в табл. 4.1, а на рис. 4.1. дисперсный состав аэрозолей в выбросе АЭС с реактором такого же типа.
Таблица 4.1
Нуклидный состав аэрозолей выброса АЭС с РБМК-1000, % активности
Нуклид |
Сод., % |
Нуклид |
Сод., % |
Нуклид |
Сод., % |
Нуклид |
Сод., % |
131J |
16,5 |
59Fe |
1,0 |
60Co |
3,0 |
99Mo+99Tc |
13,5 |
133J |
16,5 |
137Cs |
5,0 |
58Co |
1,5 |
95Zr |
2,0 |
51Cr |
42,0 |
134Cs |
3,5 |
54Mn |
1,5 |
95Nb |
1,5 |
