- •Механика кинематика материальной точки
- •1. Система отсчета. Траектория, длина пути, вектор перемещения
- •2. Скорость
- •3. Ускорение и его составляющие
- •4. Угловая скорость и угловое ускорение
- •Динамика материальной точки
- •1. Первый закон Ньютона. Масса. Сила
- •2. Основной закон динамики поступательного движения
- •3. Третий закон Ньютона
- •4. Силы в механике
- •Энергия, как универсальная мера различных форм движения и взаимодействия тел. Закон сохранения энергии
- •1. Энергия, механическая работа, мощность
- •2. Кинетическая и потенциальная энергии
- •3. Законы сохранения импульса и энергии
- •Динамика вращательного движения твердого тела
- •1. Момент силы
- •2. Пара сил
- •3. Простые механизмы
- •4. Момент инерции
- •5. Кинетическая энергия вращения
- •6. Уравнение динамики вращательного движения твердого тела
- •7. Момент импульса и закон его сохранения
- •Элементы механики жидкостей и газов
- •1. Гидростатика. Закон Архимеда. Атмосферное давление
- •2. Давление в жидкости и газе. Закон Паскаля
- •3. Уравнение неразрывности
- •4. Уравнение Бернулли и следствия из него
- •5. Ламинарный и турбулентный режимы течения жидкостей
- •6. Движение тел в жидкостях и газах
- •Основы молекулярной физики и термодинамики основные положения молекулярно- кинетической теории
- •1. Введение. Законы идеального газа. Уравнение Менделеева-Клайперона
- •2. Основное уравнение молекулярно-кинетической теории идеальных газов
- •3. Закон Максвелла о распределении молекул идеального газа по скоростям
- •4. Барометрическая формула. Распределение Больцмана
- •5. Среднее·число столкновений и средняя длина свободного пробега молекул
- •Основы термодинамики
- •1. Введение в термодинамику
- •2. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •3. Первое начало термодинамики
- •4. Работа газа при изменении его объема
- •5. Теплоемкость
- •6. Применение первого начала термодинамики к изопроцессам
- •Второе начало термодинамики
- •1. Круговой процесс (цикл). Обратимые и необратимые процессы
- •2. Приведенное количество теплоты. Энтропия
- •3. Второе начало термодинамики
- •4. Тепловые двигатели и холодильные машины. Цикл Карно и его к.П.Д. Для идеального газа
- •Реальные газы и жидкости
- •1. Уравнение Ван-дер-Ваальса
- •2. Изотермы Ван-дер-Ваальса и их анализ
- •3. Внутренняя энергия реального газа
- •4. Поверхностное натяжение
- •5. Явление смачивания
- •6. Давление под искривленной поверхностью жидкости
- •7. Капиллярные явления
- •Электричество и магнетизм основы электростатики
- •Закон сохранения заряда
- •Поток вектора напряженности
- •Теорема Гаусса
- •Поле бесконечной однородно заряженной плоскости
- •Поле двух разноименно заряженных плоскостей
- •Поле бесконечно заряженного цилиндра
- •Работа сил электростатического поля
- •Потенциал
- •Связь между напряженностью электрического поля и потенциалом
- •Эквипотенциальные поверхности
- •Полярные и неполярные молекулы
- •Диполь в однородном и неоднородном электрических полях
- •Поляризация диэлектриков
- •Поле внутри плоской пластины
- •Электроемкость
- •Конденсаторы
- •Энергия системы зарядов
- •Постоянный электрический ток
- •Электрический ток, сила и плотность тока
- •Сторонние силы. Электродвижущая сила и напряжение
- •Закон Ома. Сопротивление проводников
- •Работа и мощность тока. Закон Джоуля – Ленца
- •Закон Ома для неоднородного участка цепи
- •Правила Кирхгофа для разветвленных цепей
- •Магнитное поле
- •Магнитное поле и его характеристики
- •Закон Био – Савара – Лапласа и его применение к расчету магнитного поля
- •Закон Ампера. Взаимодействие параллельных токов
- •Действие магнитного поля на движущийся заряд
- •Магнитные поля соленоида и тороида
- •Поток вектора магнитной индукции. Теорема Гаусса для поля в
- •Работа по перемещению проводника и контура с током в магнитном поле
- •Явление электромагнитной индукции (опыты Фарадея)
- •Вращение рамки в магнитном поле
- •Индуктивность контура. Самоиндукция
- •Взаимная индукция
- •Трансформаторы
- •Энергия магнитного поля
6. Уравнение динамики вращательного движения твердого тела
Найдем выражение для работы при вращении тела (рис. 4.7). Пусть сила приложена в точке В, находящейся от оси вращения на расстоянии l, – угол между направлением силы и радиусом-вектором . Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела.
П
ри
повороте тела на бесконечно малый угол
точка приложения В
проходит путь
,
и работа равна произведению проекции
силы на направление смещения на величину
смещения:
.
Учитывая (4.1), можем записать
,
где
– момент силы относительно оси z.
Таким образом, работа при вращении тела
равна произведению момента действующей
силы на угол поворота.
Работа при вращении тела идет на увеличение его кинетической энергии:
,
но
,
поэтому
или
.
Учитывая,
что
,
получим
. (4.11)
Уравнение (4.11) представляет собой основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси.
Можно показать, что если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то имеет место векторное равенство
, (4.12)
где I – главный момент инерции тела (момент инерции относительно главной оси).
7. Момент импульса и закон его сохранения
Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:
, (4.13)
где
– радиус-вектор, проведенный из точки
О
в точку A;
– импульс материальной точки (рис. 4.8);
– вектор,
направленный по оси вращения в соответствии
с правилом правого винта.
М
одуль
вектора момента импульса
,
где
– угол между
векторами
и
,
l
– плечо
вектора
относительно точки О.
При
=90º
, (4.14)
Момент
импульса можно
выразить через момент инерции
и угловую скорость
,
т.е.
. (4.15)
Таким образом, момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.
Продифференцируем уравнение (4.15) по времени:
,
или
. (4.16)
Это выражение – основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси: производная по времени момента импульса твердого тела относительно оси равна моменту сил относительно этой же оси.
Можно показать, что имеет место векторное равенство
. (4.17)
В
замкнутой системе момент внешних сил
= 0 и
,
откуда
= const. (4.18)
Выражение (4.18) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени.
Закон сохранения момента импульса – фундаментальный закон природы. Он связан со свойством симметрии пространства – его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).
Элементы механики жидкостей и газов
