Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект лекций ч.1 для механиков.doc
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
3.9 Mб
Скачать
  1. Поле внутри плоской пластины

Рассмотрим поле, создаваемое в вакууме двумя бесконечными разноименно заряженными плоскостями. Обозначим напряженность поля , а электрическое смещение . Внесем в это поле пластину из однородного диэлектрика. Под действием поля диэлектрик поляризуется и на его поверхностях появятся связанные заряды плотности . Эти заряды создадут внутри пластины однородное поле, напряженностью .

Группа 1

Вне диэлектрика в данном случае . Напряженность поля . Оба поля направлены навстречу друг к другу, следовательно, внутри диэлектрика

.

Так как , то получим

, , откуда

, умножив на , получаем электрическое смещение внутри пластины:

.

Таким образом, внутри пластины электрическое смещение равно напряженности поля свободных зарядов, умноженной на , т.е. совпадает с электрическим смещением внешнего поля .

  1. Электроемкость

Сообщенный проводнику заряд q распределяется по его поверхности так, чтобы напряженность поля внутри проводника была равна нулю. Увеличение заряда приводит к увеличению напряженности поля в каждой точке окружающего проводник пространства. Следовательно, возрастет потенциал проводника. Таким образом, для уединенного проводника:

. (16)

Коэффициент пропорциональности С между потенциалом и зарядом называется электроемкостью проводника.

. (17)

Электроемкость численно равна заряду, сообщение которого проводнику повышает его потенциал на единицу.

Вычислим потенциал заряженного шара радиуса R. Между разностью потенциалов и напряженностью поля существует соотношение:

.

Поэтому потенциал шара можно найти, проинтегрировав выражение для напряженности вне сферы

,

по r от R до  (потенциал на бесконечности полагаем равным нулю).

. (18)

Сравнивая (18) с (17), находим, что емкость уединенного шара радиуса R, погруженного в однородный безграничный диэлектрик с относительной проницаемостью , равна:

.

За единицу емкости принимают емкость такого проводника, потенциал которого изменяется на 1В при сообщении ему заряда в 1К. Эта единица емкости называется фарадой (Ф). 1 Ф = .

  1. Конденсаторы

При поднесении к заряженному проводнику какого-либо тела потенциал проводника уменьшается по абсолютной величине, вследствие возникновения индуцированных (на проводнике) или связанных (на диэлектрике) зарядов. Это явление положено в основу устройств, называемых конденсаторами. Найдем формулу для емкости плоского конденсатора. Если площадь обкладки S, а заряд на ней q, то напряженность поля между обкладками равна:

.

Разность потенциалов между обкладками равна:

, откуда для емкости плоского конденсатора получаем:

,

где d – величина зазора между обкладками.

  1. Энергия системы зарядов

Пусть имеются заряды q1 и q2, находящиеся на расстоянии r12. Когда заряды удалены друг от друга на бесконечность, они не взаимодействуют. Положим в этом случае их энергию равной нулю. Сближение зарядов можно произвести приближая q1 к q2, либо наоборот. В обоих случаях совершается одинаковая работа. Работа переноса заряда q1 из бесконечности в точку, удаленную от q2 на r12, равна:

, (19)

где - потенциал, создаваемый зарядом q2 в той точке, в которую перемещается заряд q1. Аналогично работа переноса заряда q2 из бесконечности в точку, удаленную от q1 на r12, равна:

, (20)

где - потенциал, создаваемый зарядом q1 в той точке, в которую перемещается заряд q2. Значения работ (19) и (20) одинаковы, и каждое из них выражает энергию системы:

.

Для того чтобы в выражении энергии системы оба заряда входили симметрично, напишем его следующим образом:

. (21)

В случае N зарядов потенциальная энергия системы равна:

, (22)

где - потенциал, создаваемый в той точке, где находится qi, всеми зарядами, кроме i-го.Процесс возникновения на обкладках конденсатора зарядов +q и –q можно представить так, что от одной обкладки последовательно отнимаются порции заряда и перемещаются на другую обкладку. Работа переноса очередной порции равна:

,

где U – напряжение на конденсаторе. Заменяя U через отношение заряда к емкости и переходя к дифференциалам, получим:

.

Интегрируя, получим:

.

Энергию конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это для плоского конденсатора. Подставим в выражение для энергии конденсатора выражения для емкости плоского конденсатора, тогда:

. (23)

Так как , а S·d=V – объем, занимаемый полем, то можно написать:

. (24)

Формула (23) связывает энергию конденсатора с зарядом на его обкладках, формула (24) – с напряженностью поля. Логично поставить вопрос: где же локализована (т.е. сосредоточена) энергия, что является носителем энергии – заряды или поле? В пределах электростатики, изучающей постоянные во времени поля неподвижных зарядов, дать ответ на этот вопрос невозможно. Постоянные поля и обусловившие их заряды не могут существовать обособленно друг от друга. Однако меняющиеся во времени поля могут существовать независимо от возбудивших их зарядов и распространяться в пространстве в виде электромагнитных волн. Опыт показывает, что электромагнитные волны переносят энергию. Следовательно, носителем энергии является поле.

Если поле однородно, заключенная в нем энергия распределяется в пространстве с постоянной плотностью равной энергии поля, деленной на заполняемый полем объем. Следовательно, плотность энергии поля плоского конденсатора:

.

Этой формуле можно придать вид:

,

заменив D (14), получим плотность энергии в диэлектрике:

.

Первое слагаемое совпадает с плотностью энергии поля в вакууме. Второе – представляет собой энергию, затрачиваемую на поляризацию диэлектрика.