- •Механика кинематика материальной точки
- •1. Система отсчета. Траектория, длина пути, вектор перемещения
- •2. Скорость
- •3. Ускорение и его составляющие
- •4. Угловая скорость и угловое ускорение
- •Динамика материальной точки
- •1. Первый закон Ньютона. Масса. Сила
- •2. Основной закон динамики поступательного движения
- •3. Третий закон Ньютона
- •4. Силы в механике
- •Энергия, как универсальная мера различных форм движения и взаимодействия тел. Закон сохранения энергии
- •1. Энергия, механическая работа, мощность
- •2. Кинетическая и потенциальная энергии
- •3. Законы сохранения импульса и энергии
- •Динамика вращательного движения твердого тела
- •1. Момент силы
- •2. Пара сил
- •3. Простые механизмы
- •4. Момент инерции
- •5. Кинетическая энергия вращения
- •6. Уравнение динамики вращательного движения твердого тела
- •7. Момент импульса и закон его сохранения
- •Элементы механики жидкостей и газов
- •1. Гидростатика. Закон Архимеда. Атмосферное давление
- •2. Давление в жидкости и газе. Закон Паскаля
- •3. Уравнение неразрывности
- •4. Уравнение Бернулли и следствия из него
- •5. Ламинарный и турбулентный режимы течения жидкостей
- •6. Движение тел в жидкостях и газах
- •Основы молекулярной физики и термодинамики основные положения молекулярно- кинетической теории
- •1. Введение. Законы идеального газа. Уравнение Менделеева-Клайперона
- •2. Основное уравнение молекулярно-кинетической теории идеальных газов
- •3. Закон Максвелла о распределении молекул идеального газа по скоростям
- •4. Барометрическая формула. Распределение Больцмана
- •5. Среднее·число столкновений и средняя длина свободного пробега молекул
- •Основы термодинамики
- •1. Введение в термодинамику
- •2. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •3. Первое начало термодинамики
- •4. Работа газа при изменении его объема
- •5. Теплоемкость
- •6. Применение первого начала термодинамики к изопроцессам
- •Второе начало термодинамики
- •1. Круговой процесс (цикл). Обратимые и необратимые процессы
- •2. Приведенное количество теплоты. Энтропия
- •3. Второе начало термодинамики
- •4. Тепловые двигатели и холодильные машины. Цикл Карно и его к.П.Д. Для идеального газа
- •Реальные газы и жидкости
- •1. Уравнение Ван-дер-Ваальса
- •2. Изотермы Ван-дер-Ваальса и их анализ
- •3. Внутренняя энергия реального газа
- •4. Поверхностное натяжение
- •5. Явление смачивания
- •6. Давление под искривленной поверхностью жидкости
- •7. Капиллярные явления
- •Электричество и магнетизм основы электростатики
- •Закон сохранения заряда
- •Поток вектора напряженности
- •Теорема Гаусса
- •Поле бесконечной однородно заряженной плоскости
- •Поле двух разноименно заряженных плоскостей
- •Поле бесконечно заряженного цилиндра
- •Работа сил электростатического поля
- •Потенциал
- •Связь между напряженностью электрического поля и потенциалом
- •Эквипотенциальные поверхности
- •Полярные и неполярные молекулы
- •Диполь в однородном и неоднородном электрических полях
- •Поляризация диэлектриков
- •Поле внутри плоской пластины
- •Электроемкость
- •Конденсаторы
- •Энергия системы зарядов
- •Постоянный электрический ток
- •Электрический ток, сила и плотность тока
- •Сторонние силы. Электродвижущая сила и напряжение
- •Закон Ома. Сопротивление проводников
- •Работа и мощность тока. Закон Джоуля – Ленца
- •Закон Ома для неоднородного участка цепи
- •Правила Кирхгофа для разветвленных цепей
- •Магнитное поле
- •Магнитное поле и его характеристики
- •Закон Био – Савара – Лапласа и его применение к расчету магнитного поля
- •Закон Ампера. Взаимодействие параллельных токов
- •Действие магнитного поля на движущийся заряд
- •Магнитные поля соленоида и тороида
- •Поток вектора магнитной индукции. Теорема Гаусса для поля в
- •Работа по перемещению проводника и контура с током в магнитном поле
- •Явление электромагнитной индукции (опыты Фарадея)
- •Вращение рамки в магнитном поле
- •Индуктивность контура. Самоиндукция
- •Взаимная индукция
- •Трансформаторы
- •Энергия магнитного поля
4. Поверхностное натяжение
Жидкость является агрегатным состоянием вещества, промежуточным между газообразным и твердым, поэтому она обладает свойствами и газообразных, и твердых веществ.
Суммарная энергия частиц жидкости складывается из энергии их хаотического теплового движения и потенциальной энергии, обусловленной силами межмолекулярного взаимодействия. Для перемещения молекулы из глубины жидкости в поверхностный слой надо затратить работу. Эта работа совершается за счет кинетической энергии молекул и идет на увеличение их потенциальной энергии. Поэтому молекулы поверхностного слоя жидкости обладают большей потенциальной энергией, чем молекулы внутри жидкости. Эта дополнительная энергия, которой обладают молекулы в поверхностном слое жидкости, называемая поверхностной энергией, пропорциональна площади слоя ΔS:
ΔW=σΔS, (9.5)
где σ – коэффициент поверхностного натяжения, определяемый как плотность поверхностной энергии.
Так как равновесное состояние характеризуется минимумом потенциальной энергии, то жидкость при отсутствии внешних сил будет принимать такую форму, чтобы при заданном объеме она имела минимальную поверхность, т.е. форму шара.
Рассмотрим поверхность жидкости, ограниченную замкнутым контуром. Под действием сил поверхностного натяжения (они направлены по касательной к поверхности жидкости и перпендикулярно участку контура, на который они действуют) поверхность жидкости сократилась и рассматриваемый контур переместился. Силы, действующие со стороны выделенного участка на граничащие с ним участки, совершают работу:
ΔA=fΔlΔx,
где f=F/Δl – сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости. Видно, что ΔlΔx=ΔS, т.е.
ΔA=fΔS.
Эта работа совершается за счет уменьшения поверхностной энергии, т.е.
ΔΑ=ΔW.
Из сравнения выражений видно, что
σ=f,
т.е. коэффициент поверхностного натяжения σ равен силе поверхностного натяжения, приходящейся на единицу длины контура, ограничивающего поверхность. Единица поверхностного натяжения – ньютон на метр (Н/м) или джоуль на квадратный метр (Дж/м2). Поверхностное натяжение с повышением температуры уменьшается, так как увеличиваются средние расстояния между молекулами жидкости.
Поверхностное натяжение существенным образом зависит от примесей, имеющихся в жидкостях. Вещества, ослабляющие поверхностное натяжение жидкости, называются поверхностно-активными веществами (ПАВ). Наиболее известным поверхностно-активным веществом по отношению к воде является мыло. Оно сильно уменьшает ее поверхностное натяжение (примерно с 7,5·10-2 до 4,5·10-2 Н/м). ПАВ, понижающими поверхностное натяжение воды, являются также спирты, эфиры, нефть и др.
Существуют вещества (сахар, соль), которые увеличивают поверхностное натяжение жидкости благодаря тому, что их молекулы взаимодействуют с молекулами жидкости сильнее, чем молекулы жидкости между собой.
В строительстве применяют ПАВ для приготовления растворов, используемых при обработке деталей и конструкций, работающих в неблагоприятных атмосферных условиях (высокая влажность, повышенные температуры, воздействие солнечной радиации, и т.д.).
