- •Механика кинематика материальной точки
- •1. Система отсчета. Траектория, длина пути, вектор перемещения
- •2. Скорость
- •3. Ускорение и его составляющие
- •4. Угловая скорость и угловое ускорение
- •Динамика материальной точки
- •1. Первый закон Ньютона. Масса. Сила
- •2. Основной закон динамики поступательного движения
- •3. Третий закон Ньютона
- •4. Силы в механике
- •Энергия, как универсальная мера различных форм движения и взаимодействия тел. Закон сохранения энергии
- •1. Энергия, механическая работа, мощность
- •2. Кинетическая и потенциальная энергии
- •3. Законы сохранения импульса и энергии
- •Динамика вращательного движения твердого тела
- •1. Момент силы
- •2. Пара сил
- •3. Простые механизмы
- •4. Момент инерции
- •5. Кинетическая энергия вращения
- •6. Уравнение динамики вращательного движения твердого тела
- •7. Момент импульса и закон его сохранения
- •Элементы механики жидкостей и газов
- •1. Гидростатика. Закон Архимеда. Атмосферное давление
- •2. Давление в жидкости и газе. Закон Паскаля
- •3. Уравнение неразрывности
- •4. Уравнение Бернулли и следствия из него
- •5. Ламинарный и турбулентный режимы течения жидкостей
- •6. Движение тел в жидкостях и газах
- •Основы молекулярной физики и термодинамики основные положения молекулярно- кинетической теории
- •1. Введение. Законы идеального газа. Уравнение Менделеева-Клайперона
- •2. Основное уравнение молекулярно-кинетической теории идеальных газов
- •3. Закон Максвелла о распределении молекул идеального газа по скоростям
- •4. Барометрическая формула. Распределение Больцмана
- •5. Среднее·число столкновений и средняя длина свободного пробега молекул
- •Основы термодинамики
- •1. Введение в термодинамику
- •2. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •3. Первое начало термодинамики
- •4. Работа газа при изменении его объема
- •5. Теплоемкость
- •6. Применение первого начала термодинамики к изопроцессам
- •Второе начало термодинамики
- •1. Круговой процесс (цикл). Обратимые и необратимые процессы
- •2. Приведенное количество теплоты. Энтропия
- •3. Второе начало термодинамики
- •4. Тепловые двигатели и холодильные машины. Цикл Карно и его к.П.Д. Для идеального газа
- •Реальные газы и жидкости
- •1. Уравнение Ван-дер-Ваальса
- •2. Изотермы Ван-дер-Ваальса и их анализ
- •3. Внутренняя энергия реального газа
- •4. Поверхностное натяжение
- •5. Явление смачивания
- •6. Давление под искривленной поверхностью жидкости
- •7. Капиллярные явления
- •Электричество и магнетизм основы электростатики
- •Закон сохранения заряда
- •Поток вектора напряженности
- •Теорема Гаусса
- •Поле бесконечной однородно заряженной плоскости
- •Поле двух разноименно заряженных плоскостей
- •Поле бесконечно заряженного цилиндра
- •Работа сил электростатического поля
- •Потенциал
- •Связь между напряженностью электрического поля и потенциалом
- •Эквипотенциальные поверхности
- •Полярные и неполярные молекулы
- •Диполь в однородном и неоднородном электрических полях
- •Поляризация диэлектриков
- •Поле внутри плоской пластины
- •Электроемкость
- •Конденсаторы
- •Энергия системы зарядов
- •Постоянный электрический ток
- •Электрический ток, сила и плотность тока
- •Сторонние силы. Электродвижущая сила и напряжение
- •Закон Ома. Сопротивление проводников
- •Работа и мощность тока. Закон Джоуля – Ленца
- •Закон Ома для неоднородного участка цепи
- •Правила Кирхгофа для разветвленных цепей
- •Магнитное поле
- •Магнитное поле и его характеристики
- •Закон Био – Савара – Лапласа и его применение к расчету магнитного поля
- •Закон Ампера. Взаимодействие параллельных токов
- •Действие магнитного поля на движущийся заряд
- •Магнитные поля соленоида и тороида
- •Поток вектора магнитной индукции. Теорема Гаусса для поля в
- •Работа по перемещению проводника и контура с током в магнитном поле
- •Явление электромагнитной индукции (опыты Фарадея)
- •Вращение рамки в магнитном поле
- •Индуктивность контура. Самоиндукция
- •Взаимная индукция
- •Трансформаторы
- •Энергия магнитного поля
5. Теплоемкость
Удельная теплоемкость вещества – величина, равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1 К:
(7.9)
Единица удельной теплоемкости — джоуль деленный на килограмм-кельвин (Дж/(кгК)).
Молярная теплоемкость – величина, равная количеству теплоты, необходимому для нагревания 1 моль вещества на 1 К:
Cm=
, (7.10)
где: v=m/M – количество вещества.
Единица молярной теплоемкости — джоуль деленный на моль·кельвин (Дж/(моль·К)). Удельная теплоемкость с связана с молярной Сm соотношением
Сm = сМ (7.11)
Различают молярные теплоемкости при постоянном объеме СV и постоянном давлении Ср, если в процессе нагревания вещества его объем или давление поддерживается постоянным.
Запишем выражение первого начала термодинамики (7.6) для 1 моля газа
CmdT = dUm + pdVm. (7.12)
Молярная теплоемкость газа при постоянном объеме СV равна изменению внутренней энергии 1 моль газа при повышении его температуры на 1 К
CV =iR/2 (7.13)
Молярная теплоемкость при постоянном давлении:
Сp = СV+R (7.14)
Выражение (7.14) называется уравнением Майера; оно показывает, что Ср всегда больше СV на величину молярной газовой постоянной. Это объясняется тем, что при нагревании газа требуется еще дополнительное количество теплоты на совершение работы расширения газа, так как постоянство давления обеспечивается увеличением объема газа.
Сp=
(7.15)
При рассмотрении термодинамических процессов важно знать характерное для каждого газа отношение Ср к СV:
(7.16)
Из формул следует, что молярные теплоемкости определяются лишь числом степеней свободы и не зависят от температуры.
6. Применение первого начала термодинамики к изопроцессам
Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.
– Изохорный процесс (V= const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис.7.3), где процесс 2-1 есть изохорное нагревание, а 1-3 – изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.
δА = pdV = 0 (7.17)
Из первого начала термодинамики для изохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии: δQ=dU.
Согласно формуле (7.12),
dUm=CVdT.
Тогда для произвольной массы газа получим
dQ=dU= CVdT. (7.18)
–
Изобарный
процесс (р=const).
Диаграмма этого процесса (изобара) в
координатах р,
V
изображается
прямой, параллельной оси V.
При
изобарном процессе работа газа при
увеличении объема от V1
до V2
равна
Рис.7.3 Рис.7.4
A=
(7.19)
и определяется площадью заштрихованного прямоугольника (рис.7.7).
Если использовать уравнение Клапейрона — Менделеева для выбранных нами двух состояний, то
pV1=νRT1, pV2=νRT2,
откуда
V2–V1=
ν
(T2–T1).
Тогда выражение для работы изобарного расширения примет вид
A=νR(Т2-Т1) (7.20)
Из этого выражения вытекает физический смысл молярной газовой постоянной R: если (Т2–Т1) = 1 К, то для 1 моль газа R=A, т. е. R численно равна работе изобарного расширения 1 моля идеального газа при нагревании его на 1 К.
В изобарном процессе при сообщении газу массой т количества теплоты
dQ= CpdT,
его внутренняя энергия возрастает на величину
dU= CVdT.
При этом газ совершит работу, определяемую выражением (7.20).
Изотермический процесс (Т=const). Изотермический процесс описывается законом Бойля-Мариотта:
pV= const.
Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу. Найдем работу изотермического расширения газа:
.
Так как при T=const внутренняя энергия идеального газа не изменяется:
dU= CVdT=0,
то из первого начала термодинамики (δQ=dU+δΑ) следует, что для изотермического процесса
δQ=δΑ,
т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:
Q
=
(7.21)
Следовательно, для того чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.
Адиабатический процесс. Адиабатическим называется процесс, при котором отсутствует теплообмен (δQ=0) между системой и окружающей средой.
К адиабатическим процессам можно отнести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распространения звуковой волны настолько велика, что обмен энергией между волной и средой произойти не успевает. Адиабатические процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д. Из первого начала термодинамики для адиабатического процесса следует, что
δQ= – dU, (7.22)
т. е. внешняя работа совершается за счет изменения внутренней энергии системы.
Используя выражения (7.21) и (7.22), для произвольной массы газа перепишем уравнение в виде
pdV=–νCVdT. (7.23)
Продифференцировав уравнение состояния для идеального газа pV=ν RT, получим
pdV + Vdp = νRdT. (7.24)
Исключим температуру Т
.
Разделив переменные и учитывая, что Ср/СV =γ, найдем
dp/p= – γdV/V.
Интегрируя это уравнение в пределах от р1 до p2 соответственно от V1 до V2 а затем потенцируя, придем к выражению
p2/p1=(V1/V2)γ,
или
p1
=p2
.
Так как состояния 1 и 2 выбраны произвольно, то можно записать
pVγ=const. (7.25)
Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.
Для перехода к переменным Т, V или p,Т исключим из (7.27) с помощью уравнения Клапейрона - Менделеева соответственно давление или объем:
TV γ–1=const, (7.26)
Tγp1–γ=const. (7.27)
Выражения (7.26) – (7.27) представляют собой уравнения адиабатического процесса. В этих уравнениях безразмерная величина
γ =Cp/CV= (i+2)/i, (7.28)
называется показателем адиабаты. Для одноатомных газов (Ne, Не и др.), достаточно хорошо удовлетворяющих условию идеальности, i=3, γ = 1,67. Для двухатомных газов (Н2, N2, О2 и др.) i=5, γ= 1,4. Значения γ, вычисленные по формуле (7.28), хорошо подтверждаются экспериментом.
Диаграмма адиабатического процесса (адиабата) в координатах p, V изображается гиперболой (рис.7.5).
Н
а
рисунке видно, что адиабата (pVγ=const)
более крута, чем изотерма (pV=const).
Это объясняется тем, что при адиабатическом
сжатии 1-3
увеличение
давления газа обусловлено не только
уменьшением его объема, как при
изотермическом
сжатии, но и повышением температуры.
Вычислим работу, совершаемую газом в адиабатическом процессе. Запишем:
δА=–νCVdT.
Если газ адиабатически расширяется от объема V1 до V2, то его температура уменьшается от Τ1 до Т2 и работа расширения идеального газа
A=
. (7.29)
Применяя те же приемы, что и при выводе формулы (7.25), выражение (7.29) для работы при адиабатическом расширении можно преобразовать к виду
A=
. (7.30)
Работа, совершаемая газом при адиабатическом расширении 1–2 (определяется площадью, заштрихованной на рис.7.5, меньше, чем при изотермическом. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом – температура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.
Рассмотренные изохорный, изобарный, изотермический и адиабатический процессы имеют общую особенность – они происходят при постоянной теплоемкости.
