- •Механика кинематика материальной точки
- •1. Система отсчета. Траектория, длина пути, вектор перемещения
- •2. Скорость
- •3. Ускорение и его составляющие
- •4. Угловая скорость и угловое ускорение
- •Динамика материальной точки
- •1. Первый закон Ньютона. Масса. Сила
- •2. Основной закон динамики поступательного движения
- •3. Третий закон Ньютона
- •4. Силы в механике
- •Энергия, как универсальная мера различных форм движения и взаимодействия тел. Закон сохранения энергии
- •1. Энергия, механическая работа, мощность
- •2. Кинетическая и потенциальная энергии
- •3. Законы сохранения импульса и энергии
- •Динамика вращательного движения твердого тела
- •1. Момент силы
- •2. Пара сил
- •3. Простые механизмы
- •4. Момент инерции
- •5. Кинетическая энергия вращения
- •6. Уравнение динамики вращательного движения твердого тела
- •7. Момент импульса и закон его сохранения
- •Элементы механики жидкостей и газов
- •1. Гидростатика. Закон Архимеда. Атмосферное давление
- •2. Давление в жидкости и газе. Закон Паскаля
- •3. Уравнение неразрывности
- •4. Уравнение Бернулли и следствия из него
- •5. Ламинарный и турбулентный режимы течения жидкостей
- •6. Движение тел в жидкостях и газах
- •Основы молекулярной физики и термодинамики основные положения молекулярно- кинетической теории
- •1. Введение. Законы идеального газа. Уравнение Менделеева-Клайперона
- •2. Основное уравнение молекулярно-кинетической теории идеальных газов
- •3. Закон Максвелла о распределении молекул идеального газа по скоростям
- •4. Барометрическая формула. Распределение Больцмана
- •5. Среднее·число столкновений и средняя длина свободного пробега молекул
- •Основы термодинамики
- •1. Введение в термодинамику
- •2. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •3. Первое начало термодинамики
- •4. Работа газа при изменении его объема
- •5. Теплоемкость
- •6. Применение первого начала термодинамики к изопроцессам
- •Второе начало термодинамики
- •1. Круговой процесс (цикл). Обратимые и необратимые процессы
- •2. Приведенное количество теплоты. Энтропия
- •3. Второе начало термодинамики
- •4. Тепловые двигатели и холодильные машины. Цикл Карно и его к.П.Д. Для идеального газа
- •Реальные газы и жидкости
- •1. Уравнение Ван-дер-Ваальса
- •2. Изотермы Ван-дер-Ваальса и их анализ
- •3. Внутренняя энергия реального газа
- •4. Поверхностное натяжение
- •5. Явление смачивания
- •6. Давление под искривленной поверхностью жидкости
- •7. Капиллярные явления
- •Электричество и магнетизм основы электростатики
- •Закон сохранения заряда
- •Поток вектора напряженности
- •Теорема Гаусса
- •Поле бесконечной однородно заряженной плоскости
- •Поле двух разноименно заряженных плоскостей
- •Поле бесконечно заряженного цилиндра
- •Работа сил электростатического поля
- •Потенциал
- •Связь между напряженностью электрического поля и потенциалом
- •Эквипотенциальные поверхности
- •Полярные и неполярные молекулы
- •Диполь в однородном и неоднородном электрических полях
- •Поляризация диэлектриков
- •Поле внутри плоской пластины
- •Электроемкость
- •Конденсаторы
- •Энергия системы зарядов
- •Постоянный электрический ток
- •Электрический ток, сила и плотность тока
- •Сторонние силы. Электродвижущая сила и напряжение
- •Закон Ома. Сопротивление проводников
- •Работа и мощность тока. Закон Джоуля – Ленца
- •Закон Ома для неоднородного участка цепи
- •Правила Кирхгофа для разветвленных цепей
- •Магнитное поле
- •Магнитное поле и его характеристики
- •Закон Био – Савара – Лапласа и его применение к расчету магнитного поля
- •Закон Ампера. Взаимодействие параллельных токов
- •Действие магнитного поля на движущийся заряд
- •Магнитные поля соленоида и тороида
- •Поток вектора магнитной индукции. Теорема Гаусса для поля в
- •Работа по перемещению проводника и контура с током в магнитном поле
- •Явление электромагнитной индукции (опыты Фарадея)
- •Вращение рамки в магнитном поле
- •Индуктивность контура. Самоиндукция
- •Взаимная индукция
- •Трансформаторы
- •Энергия магнитного поля
3. Первое начало термодинамики
Внутренняя энергия системы может изменяться в результате различных процессов, например совершения над системой работы или сообщения ей теплоты. Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: работе и теплоте.
Допустим, что некоторая система (газ, заключенный в цилиндр под поршнем), обладая внутренней энергией U1, получила некоторое количество теплоты Q и, перейдя в новое состояние, характеризующееся внутренней энергией U2, совершила работу А над внешней средой. Количество теплоты считается положительным, когда оно подводится к системе, а работа – положительной, когда система совершает ее против внешних сил. Опыт показывает, что в соответствии с законом сохранения энергии при любом способе перехода системы из одного состояния в другое изменение внутренней энергии ΔU=U2 - U1 будет одинаковым и равным разности между количеством теплоты Q, полученным системой, и работой А, совершенной системой против внешних сил:
ΔU=Q – A, или
Q=ΔU + A (7.5)
Уравнение (7.5) выражает первое начало термодинамики в интегральной форме: теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил.
Выражение (7.5) в дифференциальной форме будет иметь вид:
dQ=dU + dA,
или в более корректной форме:
δQ=dU+δA, (7.6)
где dU – бесконечно малое изменение внутренней энергии системы, δА — элементарная работа, δQ — бесконечно малое количество теплоты. В этом выражении dU является полным дифференциалом, а δА и δQ таковыми не являются. В дальнейшем будем использовать запись первого начала термодинамики в форме (7.6).
Из формулы (7.5) следует, что в системе СИ количество теплоты выражается в тех же единицах, что работа и энергия, т. е. в джоулях (Дж).
Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии ΔU=0. Тогда, согласно первому началу термодинамики, A = Q, т. е. вечный двигатель первого рода – периодически действующий двигатель, который совершал бы большую работу, чем сообщенная ему извне энергия, – невозможен.
4. Работа газа при изменении его объема
Для рассмотрения конкретных процессов найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, находящийся под поршнем в цилиндрическом сосуде (рис.7.1).
Если
газ, расширяясь, передвигает поршень
на бесконечно малое расстояние dl,
то производит над ним работу
δA=Fdl=pSdl=p dV,
где S — площадь поршня, Sdl=dV— изменение
Рис.7.1 объема системы. Таким образом,
δA=p dV (7.7)
Полную работу А, совершаемую газом при изменении его объема от V1 до V2 найдем интегрированием формулы (7.7):
(7.8)
Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение справедливо при любых изменениях объема твердых, жидких и газообразных тел.
Рис.7.2
Произведенную при том или ином процессе работу можно изобразить графически с помощью кривой в координатах р, V. Пусть изменение давления газа при его расширении от объема V1 до объема V2 изображается кривой на рис.7.2.
При увеличении объема на dV совершаемая газом работа равна pdV, т. е. определяется площадью полоски с основанием dV, заштрихованной на рис.7.2. Поэтому полная работа, совершаемая газом при расширении от объема V1 до объема V2 определяется площадью, ограниченной осью абсцисс, кривой p=f(V) и прямыми V1 и V2.
Графически можно изображать только равновесные процессы – процессы, состоящие из последовательности равновесных состояний. Они протекают так, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы неравновесны (они протекают с конечной скоростью), но в ряде случаев неравновесностью реальных процессов можно пренебречь (чем медленнее процесс протекает, тем он ближе к равновесному). В дальнейшем рассматриваемые процессы будем считать равновесными.
