- •33.Превращение переохлажденного аустенита. Характеристика структур перлитного и промежуточного превращений
- •34.Распад аустенита при непрерывном охлаждении. Мартенситное превращение. Критическая скорость закалки. Обработка стаи холодом
- •35.Превращение мартенсита и остаточного аустенита при нагреве
- •36.Основные виды термической обработки, их характеристики
- •37.Отжиг стали, отжиг первого рода
- •38 Отжиг стали, отжиг второго рода, нормализации стали
- •39.Закалка стали, способ закалки их характеристика и технология выполнения
- •40.Отпуск стали, его виды. Структура свойства и применение стали после различных видов отпуска, термоулучшение
- •41.Закаливаемость и прокаливаемость сталей, факторы влияющие на закаливаемость и прокаливаемость, характеристика прокаливаемости и ее определение
- •42.Особенности термической обработки в легированных сталях, нормализация сталей и классификация сталей после структуры нормализации
- •43.Поверхостная закалка сталей, ее виды. Стали подвергающиеся поверхостной закалке их характеристика и применение
- •44.Термомеханическая обработка сталей, ее виды технология проведения и назначения
- •45.Цементация стали ,ее виды, термическая обработка после цементации. Стали упрочняемые цементацией
- •46.Азотирование и цианирование сталей, их назначение и технология выполнения
- •47.Диффузионное металлизация сталей, ее виды технология выполнения и применения
- •48.Классификация алюминиевых сплавов. Деформируемые алюминиевые сплавы, неупрочняемые термической обработкой. Состав, свойства маркировка и применение
- •50.Закалка естественное и искусственное старение алюминиевых сплавов
- •52.Литейные алюминиевые сплавы, особенности состава, свойства, термическая обработка и применение
- •53.СаПы и саСы. Состав, технология производства деталей, структура, свойства и применение
- •54.Свойства технически чистого титана. Влияние легирующих элементов на аллотропическое превращение в титане
- •55.Классификация титановых сплавов по структуре в равновесном состоянии. Свойства и применение сплавов с различной структурой.
- •56.Титановые сплавы, упрочняемые термообработкой. Виды термообработки, структура, свойства и применение термически упрочненных титановых сплавов.
- •57.Термомеханическая и химико-термическая обработка титановых сплавов
- •60.Характеристика бериллия .Сплавы на основе бериллия, их свойства и применения
- •61.Тугоплавкие металлы и сплавы на их основе. Свойства и особенности применения
48.Классификация алюминиевых сплавов. Деформируемые алюминиевые сплавы, неупрочняемые термической обработкой. Состав, свойства маркировка и применение
Алюминиевые сплавы условно делятся на литейные (для производства отливок) и деформируемые (для производства проката и поковок).
К сплавам, пеупрочняемым термической обработкой, относятся сплавы АМц и АМг
Для получения деформируемых сплавов в алюминий вводят в основном растворимые в нем легирующие элементы в количестве, не превышающем предел их растворимости при высокой температуре. В них не должно быть эвтектики, которая легкоплавка и резко снижает пластичность.
Сплавы, упрочняемые давлением, упрочняются только холодной деформацией (холодная прокатка или волочение). Деформационное упрочнение приводит к увеличению прочности и твердости, но уменьшает пластичность. Восстановление пластичности достигается рекристаллизационным отжигом. Прокат из этой группы сплавов имеет следующие состояния поставки, указываемые в маркировке полуфабриката:
1) не имеет обозначения - после прессования или горячей прокатки без термообработки
2) М - отожженное
3) Н4 - четвертьнагартованное
4) Н2 - полунагартованное
5) Н3 - нагартованное на 3/4
6) Н - нагартованное
49.термическая обработка алюминиевых сплавов деформируемые алюминиевые сплавы, неупрочняемые термической обработкой. состав, свойства маркировка и применение
Алюминиевые сплавы подвергают трем видам термической обработки: отжигу, закалке и старению. Основными видами отжига являются: диффузионный (гомогенизация), рекристаллизацпонный и термически упрочненных сплавов.
Деформируемые алюминиевые сплавы, неупрочняемые термической обработкой (состав, марки, свойства, применение).
К сплавам, пеупрочняемым термической обработкой, относятся сплавы АМц и АМг (табл. 13,3). Сплавы отличаются высокой пластичностью, хорошей свариваемостью и высокой коррозионной стойкостью.
Сплавы типа АМц относятся к системе Аl-Мn (рис. 13.4, а). Структура сплавов типа АМц состоит из α-твердого раствора и вторичных выделений фазы МnАl6, переходящих в твердый раствор при повышении температуры. В присутствии железа вместо MnAl6 образуется сложная тройная фаза (Mn, Fe)Al6, практически нерастворимая в алюминии, поэтому сплавы типа АМц не упрочняются термической обработкой. В отожженном состоянии они обладают высокой пластичностью и низкой прочностью. Пластическая деформация упрочняет эти сплавы почти в два раза.
Сплавы типа АМг относятся к системе Аl-Mg (рис. 13.4, б). Магний образует с алюминием α-твердый раствор, концентрация которого при повышении температуры увеличивается от 1,4 до 17,4 % в результате растворения фазы Mg2Al3. Однако сплавы, содержащие до 7% Mg, дают очень незначительное упрочнение при термической обработке. Вследствие этого сплавы тина АМг, как и АМц, упрочняют с помощью пластической деформации и используют в нагаргованном (АМгН 80% наклепа) и полунагартованном (АМгП — 40% наклепа) состояниях.
Однако применение наклепа ограничено из-за резкого снижения пластичности сплавов, поэтому их используют в отожженном (мягком — АМгМ) состоянии. Сплавы типа АМц и АМг отжигают при 350-420°С. При повышении содержания магния временное сопротивление возрастает oт 110 MПa (АМг1) до 340 МПа (АМг6) при соответствующем снижении относительного удлинения с 28 до 20%. Легирование магнием, кроме того, вызывает склонность к окислению по время плавки, разливки и кристаллизации, что приводит к появлению в структуре оксидных пленок и снижению механических свойств. Поэтому сплавы с высоким содержанием магния (АМг6, АМг10) для устранения склонности к окислению легируют бериллием. Укрупнение зерна, вызванное бериллием, устраняется добавкой титана или циркония.
Сплавы типа AMц и АМг применяют для изделий, получаемых глубокой вытяжкой, сваркой, от которых требуется высокая коррозионная стойкость (трубопроводы для бензина и масла, сварные баки), а также для заклепок, переборок, корпусов и мачт судов, лифтов, узлов подъемных кранов, рам вагонов, кузовов автомобилей и др.
