- •33.Превращение переохлажденного аустенита. Характеристика структур перлитного и промежуточного превращений
- •34.Распад аустенита при непрерывном охлаждении. Мартенситное превращение. Критическая скорость закалки. Обработка стаи холодом
- •35.Превращение мартенсита и остаточного аустенита при нагреве
- •36.Основные виды термической обработки, их характеристики
- •37.Отжиг стали, отжиг первого рода
- •38 Отжиг стали, отжиг второго рода, нормализации стали
- •39.Закалка стали, способ закалки их характеристика и технология выполнения
- •40.Отпуск стали, его виды. Структура свойства и применение стали после различных видов отпуска, термоулучшение
- •41.Закаливаемость и прокаливаемость сталей, факторы влияющие на закаливаемость и прокаливаемость, характеристика прокаливаемости и ее определение
- •42.Особенности термической обработки в легированных сталях, нормализация сталей и классификация сталей после структуры нормализации
- •43.Поверхостная закалка сталей, ее виды. Стали подвергающиеся поверхостной закалке их характеристика и применение
- •44.Термомеханическая обработка сталей, ее виды технология проведения и назначения
- •45.Цементация стали ,ее виды, термическая обработка после цементации. Стали упрочняемые цементацией
- •46.Азотирование и цианирование сталей, их назначение и технология выполнения
- •47.Диффузионное металлизация сталей, ее виды технология выполнения и применения
- •48.Классификация алюминиевых сплавов. Деформируемые алюминиевые сплавы, неупрочняемые термической обработкой. Состав, свойства маркировка и применение
- •50.Закалка естественное и искусственное старение алюминиевых сплавов
- •52.Литейные алюминиевые сплавы, особенности состава, свойства, термическая обработка и применение
- •53.СаПы и саСы. Состав, технология производства деталей, структура, свойства и применение
- •54.Свойства технически чистого титана. Влияние легирующих элементов на аллотропическое превращение в титане
- •55.Классификация титановых сплавов по структуре в равновесном состоянии. Свойства и применение сплавов с различной структурой.
- •56.Титановые сплавы, упрочняемые термообработкой. Виды термообработки, структура, свойства и применение термически упрочненных титановых сплавов.
- •57.Термомеханическая и химико-термическая обработка титановых сплавов
- •60.Характеристика бериллия .Сплавы на основе бериллия, их свойства и применения
- •61.Тугоплавкие металлы и сплавы на их основе. Свойства и особенности применения
39.Закалка стали, способ закалки их характеристика и технология выполнения
З
акалкой
стали называется операция термической
обработки, заключающаяся в нагреве её
по крайней мере выше критической точки
Ac1(T.e. до аустенито-ферритного, аустенитного
или аустенито-цементитного), выдержке
и последующем охлаждении в различных
средах с целью получения при комнатной
температуре неустойчивых продуктов
распада аустенита, а следовательно,
повышения твёрдости и прочности.
Закалка в одном охладителе — нагретую до определённых температур деталь погружают в закалочную жидкость, где она остаётся до полного охлаждения. Этот способ применяется при закалке несложных деталей из углеродистых и легированных сталей.
Прерывистая закалка в двух средах — этот способ применяют при закалке высокоуглеродистых сталей. Деталь сначала быстро охлаждают в быстро охлаждающей среде (например воде), а затем в медленно охлаждающей (масло).
Струйчатая закалка заключается в обрызгивании детали интенсивной струёй воды и обычно её применяют тогда, когда нужно закалить часть детали. При этом способе не образуется паровая рубашка, что обеспечивает более глубокую прокаливаемость, чем простая закалка в воде. Такая закалка обычно производится в индукторах на установках ТВЧ.
Ступенчатая закалка — закалка, при которой деталь охлаждается в закалочной среде, имеющей температуру выше мартенситной точки для данной стали. При охлаждении и выдержке в этой среде закаливаемая деталь должна приобрести во всех точках сечения температуру закалочной ванны. Затем следует окончательное, обычно медленное, охлаждение, во время которого и происходит закалка, то есть превращение аустенита в мартенсит.
Изотермическая закалка. В отличие от ступенчатой при изотермической закалке необходимо выдерживать сталь в закалочной среде столько времени, чтобы успело закончиться изотермическое превращение аустенита.
40.Отпуск стали, его виды. Структура свойства и применение стали после различных видов отпуска, термоулучшение
О́тпуск — технологический процесс, заключающийся в термической обработке закалённого на мартенсит сплава или металла, при которой основными процессами являются распад мартенсита, а также полигонизация и рекристаллизация.
Отпуск проводят с целью получения более высокой пластичности и снижения хрупкости материала при сохранении приемлемого уровня егопрочности. Для этого изделие подвергается нагреву в печи до температуры от 150—260 °C до 370—650 °C с последующим медленным остыванием.
Низкотемпературный отпуск
Проводят при температурах до 250 °C. Закалённая сталь сохраняет высокую износостойкость, однако такое изделие (если оно не имеет вязкой сердцевины) не выдержит высоких динамических нагрузок. Такому отпуску подвергают режущие и измерительные инструменты из углеродистых и низколегированных сталей.
Среднетемпературный отпуск
Проводят при температурах 350—500 °C и применяют главным образом для пружин и рессор, а также для штампов. Такой отпуск обеспечивает высокие пределы упругости и выносливости, а также релаксационную стойкость. Охлаждение после отпуска проводят при температурах 400—500 °C в воде, после чего возникают сжимающие остаточные напряжения, которые увеличивают предел выносливости пружин.
Высокотемпературный отпуск
Проводят при температурах 500—680 °C. При этом остается высокая прочность и пластичность, а также максимальная вязкость. Высокому отпуску подвергают детали, воспринимающие ударные нагрузки (зубчатые колеса, валы).
