- •33.Превращение переохлажденного аустенита. Характеристика структур перлитного и промежуточного превращений
- •34.Распад аустенита при непрерывном охлаждении. Мартенситное превращение. Критическая скорость закалки. Обработка стаи холодом
- •35.Превращение мартенсита и остаточного аустенита при нагреве
- •36.Основные виды термической обработки, их характеристики
- •37.Отжиг стали, отжиг первого рода
- •38 Отжиг стали, отжиг второго рода, нормализации стали
- •39.Закалка стали, способ закалки их характеристика и технология выполнения
- •40.Отпуск стали, его виды. Структура свойства и применение стали после различных видов отпуска, термоулучшение
- •41.Закаливаемость и прокаливаемость сталей, факторы влияющие на закаливаемость и прокаливаемость, характеристика прокаливаемости и ее определение
- •42.Особенности термической обработки в легированных сталях, нормализация сталей и классификация сталей после структуры нормализации
- •43.Поверхостная закалка сталей, ее виды. Стали подвергающиеся поверхостной закалке их характеристика и применение
- •44.Термомеханическая обработка сталей, ее виды технология проведения и назначения
- •45.Цементация стали ,ее виды, термическая обработка после цементации. Стали упрочняемые цементацией
- •46.Азотирование и цианирование сталей, их назначение и технология выполнения
- •47.Диффузионное металлизация сталей, ее виды технология выполнения и применения
- •48.Классификация алюминиевых сплавов. Деформируемые алюминиевые сплавы, неупрочняемые термической обработкой. Состав, свойства маркировка и применение
- •50.Закалка естественное и искусственное старение алюминиевых сплавов
- •52.Литейные алюминиевые сплавы, особенности состава, свойства, термическая обработка и применение
- •53.СаПы и саСы. Состав, технология производства деталей, структура, свойства и применение
- •54.Свойства технически чистого титана. Влияние легирующих элементов на аллотропическое превращение в титане
- •55.Классификация титановых сплавов по структуре в равновесном состоянии. Свойства и применение сплавов с различной структурой.
- •56.Титановые сплавы, упрочняемые термообработкой. Виды термообработки, структура, свойства и применение термически упрочненных титановых сплавов.
- •57.Термомеханическая и химико-термическая обработка титановых сплавов
- •60.Характеристика бериллия .Сплавы на основе бериллия, их свойства и применения
- •61.Тугоплавкие металлы и сплавы на их основе. Свойства и особенности применения
54.Свойства технически чистого титана. Влияние легирующих элементов на аллотропическое превращение в титане
Данный металл плавится при довольно высокой температуре (1668±4°С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.
Известны две аллотропические модификации титана. Низкотемпературная альфа-модификация, существующая до 882,5 ° С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С до температуры плавления.
Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза - железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.
Титан имеет довольно высокое удельное электросопротивлеиие, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.
Достоинства:
малая плотность (4500 кг/м3) способствует уменьшению массы используемого материала;
высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
необычайнао высокая коррозионная стойкость, обусловленная способностью титана образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах
Основная часть титана расходуется на нужды авиационной и ракетной техникии и морского судостроения. Титан (ферротитан) используют в качестве лигирующей добавки к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали элетктровакуумных приборов, работающих при высоких температурах.
55.Классификация титановых сплавов по структуре в равновесном состоянии. Свойства и применение сплавов с различной структурой.
Классификация титановых сплавов по структуре в равновесном состоянии. Особенности применения сплавов a-сплавы ВТ1-00; ВТ1-0; ВТ1; ВТ5; ВТ5-1; ВТ18 и другие обладают высокой термической стабильностью, сопротивляемостью коррозии и газонасыщению поверхностного слоя до температуры 600°С, хорошо свариваются. Нелегированные титановые сплавы имеют высокую пластичность и хорошо деформируются в холодном
состоянии. Все эти сплавы термически не упрочняются. Их применяют для изготовления сварных бандажей, обтекателей, резервуаров, корпусных деталей самолетов и двигателей, для изготовления трубопроводов и трубопроводной арматуры.
Псевдо-a-сплавы ОТ4-0, ОТ4-1, ОТ4, ОТ4-2, ВТ4, АТ2 , АТ3, АТ4, ВТ20, ТС5 и др., легированные в основном a-стабилизатором (Аl) и небольшим количеством b-стабилизирующих элементов ( Мn до 2%, Мо до 1%), имеют до 10% b-фазы, повышающей их технологическую пластичность и прочность. Эти сплавы обладают удовлетворительной свариваемостью и коррозионной стойкостью, их применяют для элементов обшивки, элеронов, деталей хвостового оперения, передних кромок крыла и деталей, свариваемых из листа, стоек, кронштейнов и др. Сплавы используют в отожженном состоянии, так как эффект упрочняющей термообработки невелик.
(a+b)-сплавы: ВТ6С, ВТ6, ВТ8, ВТ9, ВТ3-1 , ВТ14, ВТ16, ВТ22, ВТ23, ВТ25, ВТ28, ВТ33 и др., легированные изоморфными ( Мо, V и др.) и квазиизоморфными ( Мn, Сг, Fе и др.) b-стабилизаторами, обеспечивающими возможность термического упрочнения до sв = 1300 . 1500 МПа путем закалки и старения, являются высокопрочными и жаропрочными. Их применяют для изготовления силовых узлов, корпусов, дисков и других деталей компрессора. По удельной прочности эти сплавы при температурах 400 .600°С превосходят все другие конструкционные материалы, за исключением бериллиевых сплавов. Сплав ВТ22 имеет наивысшую усталостную прочность.
Псевдо-b-сплавы ВТ15, ТС6 - высоколегированные сплавы на основе b-фазы с небольшим количеством a-фазы. После закалки эти сплавы имеют термодинамически нестабильную b-фазу (bн) и обладают достаточно высокими прочностью ( sв = 800 МПа) и пластичностью. Путем старения они дополнительно упрочняются до sв = 1300 .1500 МПа. Сплавы применяют для изготовления сложных по форме тяжелонагруженных деталей типа бандажей, а также болтов высокой надежности.
Группа b-сплавов представлена одним сплавом марки 4201, содержащим 33% Мо. Сплав имеет высокую пластичность и среднюю прочность, термически не упрочняется.
