Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lekcii_po_avtomatike.docx
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
10.51 Mб
Скачать

Тема 1.2 измерительные преобразователи (датчики)

Электрические датчики относятся к наиболее важным элементам систем автоматики. С помощью датчиков контролируемая или регулируемая величина преобразуется в сигнал, в зависимости от изменения которого и протекает весь процесс регулирования. Наибольшее распространение в автоматике получили датчики с электрическим выходным сигналом. Объясняется это прежде всего удобством передачи электрического сигнала на расстояние, его обработки и возможностью преобразования электрической энергии в механическую работу. Кроме электрических распространение получили механические, гидравлические и пневматические датчики.

По характеру формирования электрического выходного сигнала электрические датчики делятся на параметрические (пассивные) и генераторные (активные). В параметрических датчиках изменение входного сигнала вызывает соответствующее изменение какого-либо параметра электрической цепи (активного сопротивления, индуктивности, емкости) Генераторные датчики являются источниками электрической энергии, зависящей от входного сигнала.

Потенциометрические датчики

Потенциометрические датчики предназначены для преобразования механического перемещения в электрический сигнал. Основной частью датчика является реостат, сопротивление которого изменяется при перемещении движка, скользящего по проволоке (схема включения потенциометрического датчика показана на рис. 1.2, а).

Рис. 1.2 Схема включения потенциометрического датчика.

Напряжение питания подается на всю обмотку реостата через неподвижные выводы этой обмотки. Выходное напряжение, пропорциональное перемещению движка, снимается с одного из неподвижных выводов и с подвижного движка. Такая схема включения в электротехнике называется потенциометрической или схемой делителя напряжения. потенциометрическую схему включения датчика можно представить как последовательное соединение резисторов R-Rвых и Rвых (рис. 1.2, б).

(1.1)

Т.е. выходное напряжение пропорционально перемещению (рис. 1.3). Это верно, если сопротивление нагрузки (то что подключается к Uвых) намного больше сопротивления датчика R (β=Rн/R=∞).

Рис. 1.3 Зависимость Uвых/U от перемещения α=x/l.

Реверсивные потенциометрические датчики

Выходное напряжение реверсивных датчиков изменяет знак (полярность) при изменении знака входного сигнала. В системах автоматического регулирования обычно требуются именно реверсивные (или двухтактные) датчики. Схемы реверсивных потенциометрических датчиков показаны на рис. 1.4.

Рис. 1.4 Реверсивные схемы потенциометрических датчиков.

В схеме на рис. 1.4, а используется потенциометр с неподвижным выводом от средней точки намотки. Выходное напряжение снимается с движка и средней точки. При переходе движка через среднюю точку выходное напряжение изменяет свой знак: при питании переменным током фаза изменяется на 180°, а постоянным током — полярность изменяется на противоположную. В следящих системах широко используется мостовая схема включения потенциометрических датчиков, показанная на рис. 1.4, б. Потенциометр П1 связан с входной осью следящей системы и является задающим. Потенциометр П2 имеет механическую связь с исполнительным устройством. Выходное напряжение (или ток нагрузки) определяется разницей в положении движков потенциометров П1 и П2, т. е. соответствует сигналу ошибки следящей системы. Знак сигнала ошибки зависит от того, больше или меньше угол поворота исполнительного вала по сравнению с углом поворота входного вала.

На рис. 1.5 представлены выходные характеристики соответственно для схемы рис. 1.4 а и рис. 1.4 б.

Р ис. 1.5 Зависимость выходного напряжения от перемещения.

В маломощных следящих системах в качестве нагрузки мостовой схемы (рис.1.4б) может быть включен якорь исполнительного электродвигателя. При рассогласовании в положениях движков задающего и исполнительного потенциометров через якорь электродвигателя пойдет ток, значение которого будет соответствовать величине рассогласования (∆α), а направление - знаку рассогласования. Электродвигатель перемещает исполнительную ось следящей системы до тех пор, пока не будет устранено рассогласование.

Функциональные потенциометрические датчики

Для получения выходного сигнала, изменяющегося по определенному закону, применяют функциональные потенциометрические датчики. В этих датчиках зависимость сопротивления обмотки от перемещения движка является нелинейной. Требуемая нелинейность обеспечивается различными способами: изменением профиля каркаса; изменением материала или размера провода; изменением шага намотки или длины витка.

Функциональные потенциометрические датчики нашли применение в автоматических вычислительных системах. Например, в автоматических навигационных системах самолетов -пользуются электромеханические счетно-решающие устройства, выполняющие операции умножения скорости на синус или косинус курсового угла. С помощью функциональных датчиков может быть скомпенсирована исходная нелинейность первичного чувствительного элемента. Например, в баке сложного профиля уровень горючего не связан линейно с объемом. С помощью функционального датчика можно обеспечить линейную зависимость между выходным сигналом датчика и количеством горючего в баке.

Ч аще всего получение необходимой функциональной зависимости обеспечивается подбором определенного профиля каркаса потенциометра. Конструкция так называемого «профильного» потенциометрического датчика показана на рис. 1.6. Изоляционный каркас 1 имеет небольшую постоянную толщину b, а высота его h изменяется по длине намотки l. На каркас наматывается проволока 2 с высоким удельным сопротивлением. При входных сигналах в виде угловых перемещений каркас с непрерывной обмоткой изгибают в цилиндр. Напряжение питания подается на концы обмотки. Выходное напряжение функционально зависящее от перемещения движка х, снимается между одним из концов обмотки и движком (щеткой).

Рис. 1.6 Профильные функциональные потенциометрические датчики.

Требуемую функциональную характеристику можно приближенно получить, применяя каркас постоянной высоты с намоткой, которая на разных участках(l1, l2,l3) выполняется разным шагом (рис. 1.7). Иногда на разных участках намотки используют провода различных сечений или материалов с отличающимися удельными сопротивлениями.

Довольно распространенным способом получения функциональной зависимости между выходным напряжением и перемещением является включение дополнительных постоянных резисторов (рис. 1.7).

Рис. 1.7 Другие типы функциональных потенциометрических датчиков.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]