Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Министерство здравоохранения Свердловской облас...doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
161.79 Кб
Скачать

Давление жидкости на вертикальную пластинку

По закону Паскаля давление жидкости на горизонтальную пластину равно весу столба этой жидкости, имеющего основанием пластинку, а вы­сотой — глубину ее погружения от свободной поверхности жидкости, т. е. Р =g, где gускорение свободного падения,  — плотность жидкости, S — площадь пластинки, hглубина ее погружения.

По этой формуле нельзя искать давление жидкости на вертикально погруженную пластинку, так как ее разные точки лежат на разных глу­бинах.

Пусть в жидкость погружена вертикально пластина, ограниченная ли­ниями х = а, х = b, y и y. Для нахождения давления Р жидкости на эту пластину применим схему II (метод дифференциала).

1. Пусть часть искомой величины Р есть функция от х: р = р(х), т. е. р = р(х) — да­вление на часть пластины, соответствующее от­резку [а; b] значений переменной х, где х  [a; b] (р(a) = 0, р(b) = Р).

Рис 14

 

2. Дадим аргументу х приращение Δx = dх. Функция р(х) получит приращение Δр (на рисун­ке — полоска-слой толщины dх). Найдем диффе­ренциал dр этой функции. Ввиду малости бу­дем приближенно считать полоску прямоуголь­ником, все точки которого находятся на одной глубине х, т. е. пластинка эта — горизонталь­ная.

Тогда по закону Паскаля dр =.

3. Интегрируя полученное равенство в пределах от х = а до х = b, получим

P =   или P =

Пример. Определить величину давле­ния воды на полукруг, вертикально погружен­ный в жидкость, если его радиус R, а центр О находится на свободной поверхности воды (рис 15).[5]

Решение: Воспользуемся полученной форму­лой для нахождения давления жидкости на вер­тикальную пластинку. В данном случае пластинка ограничена линиями у = -, y, x = 0, x = R.

Вычиение статических моментов и координат центра тяжести плоской кривой

Пусть на плоскости Оху задана система материальных точек М(х;у), М22;y), … , M(x;y) соответственное массами m,m, … , m„.

Статическим моментом SХ системы материальных точек относи­тельно оси Ох называется сумма произведений масс этих точек на их ординаты (т. е. на расстояния этих точек от оси Ох):

         Аналогично определяется статистический момент S этой системы относительно оси Oy: S= .

Если массы распределены непрерывным образом вдоль некоторой кри­вой, то для выражения статического момента понадобится интегрирова­ние.

Пусть у =f/(х) (a ≤ х ≤ b) — это уравнение материальной кривой АВ. Будем считать ее однородной с постоянной линейной плотностью  ( = const).

Для произвольного х  [а;b] на кривой АВ найдется точка с коорди­натами (х; у). Выделим на кривой элементарный участок длины dl, содер­жащий точку (х;у). Тогда масса этого участка равна . Примем этот участок dl приближенно за точку, отстоящую от оси Ох на расстоянии у. Тогда дифференциал статического момента dS (“элементарный момент”) будет равен , т.е. .

Отсюда следует, что статический момент SХ кри­вой АВ относительно оси Ох равен

Аналогично находим S:

Статические моменты SХ и SУ  кривой позволя­ют легко установить положение ее центра тяжести (центра масс).

Центром тяжести материальной плоской кривой у = f(х), х 6 [а; b] называется точка плоскости, обладающая следующим свойством: если в этой точке сосредоточить всю массу т заданной кривой, то статический момент этой точки относительно любой координатной оси будет равен ста­тическому моменту всей кривой у = f(х) относительно той же оси. Обо­значим через С(хсс) центр тяжести кривой АВ.

Из определения центра тяжести следуют равенства  и  или  и . Отсюда ,

или

 

Пример. Найти центр тяжести однородной дуги окружности x + y= R2, расположенной в первой координатной четверти (рис 16).[5]

Рис 16

 

Решение: Очевидно, длина указанной окружности равна , т.е. . Найдем статистический момент ее относительно оси Ох. Так как уравнение дуги есть  и , то ()

.

Стало быть,

Так как данная дуга симметрична относительно биссектрисы первого координатного угла, то хс = ус = Итак, центр тяжести имеет координаты (;).