Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Министерство здравоохранения Свердловской облас...doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
161.79 Кб
Скачать

Условия существования определенного интеграла

1. Интегрируемая функция необходимо ограничена.

Если бы функция f(x) была в промежутке [a, b] неограниченна, то – при любом разбиении промежутка на части – она сохранила бы подобное свойство хоть в одной из частей. Тогда за счет выбора в этой части точки  можно было бы сделать f(), а с ней и сумму , - сколь угодно большой; при этих условиях конечного предела для  существовать не могло бы.

2.Для существования определенного интеграла необходимо и достаточно, чтобы было

(S - s) = 0

s = m ΔX,                  S = M ΔX,

где m и M - точные нижняя и верхняя грани. Суммы Дарбу s и S служат точными, соответственно, нижней и верхней границами для интегральных сумм.[7]

Приложение интегрального исчисления

3.1 Общие понятия

Пусть требуется найти значение какой – либо геометрической или физической величины A (площадь фигуры, объем тела, давление жидкости на вертикальную пластину и т. д.), связанной с отрезком [a, b] изменения переменной x. Предполагается, что при разбиении отрезка [a, b] точкой с  (a, b) на части [a, c] и [c, b] значение величины A, соответствующее всему отрезку [a, b] равно сумме ее значений, соответствующих [a, c] и [c, b].

Для нахождения этой величины А можно руководствоваться одной из двух схем: I схема (или метод интегральных сумм) и II схема (или метод дифференциала).[5]

Первая схема базируется на определении определенного интеграла.

1. Точками x = a, x, … ,x = b  разбить отрезок [a, b] на n частей. В соответствии с этим, интересующая нас величина A разобьется на n “элементарных слагаемых”

Δ A(I = 1, … , n): A = ΔA + ΔA+ … + ΔA

2. Представить каждое “элементарное слагаемое” в виде произве­дения некоторой функции (определяемой из условия задачи), вычислен­ной в произвольной точке соответствующего отрезка на его длину:

Δ A≈ f(c) ΔX

При нахождении приближенного значения ДЛ; допустимы некоторые упрощения: дугу на малом участке можно заменить хордой, стягивающей ее концы; переменную скорость на малом участке можно приближенно считать постоянной и т. д.

Получим приближенное значение величины А в виде интегральной суммы:

A≈ f(c) ΔX+ … + F(c)ΔX = f(c) ΔX

1.   Искомая величина А равна пределу интегральной суммы, т. е.

A = f(c) ΔX = f(x)dx.

Указанный “метод сумм”, как видим, основан на представлении интегра­ла как о сумме бесконечно большого числа бесконечно малых слагаемых.

Схема I была применена для выяснения геометрического и физическо­го смысла определенного интеграла.

Вторая схема представляет собой несколько видоизмененную схему I и называется “метод дифференциала” или “метод отбрасывания беско­нечно малых высших порядков”:

1) на отрезке [а, b] выбираем произвольное значение х и рассматри­ваем переменный отрезок [a, x]. На этом отрезке величина A становится функцией x: А — А(x), т. е. считаем, что часть искомой величины А есть неизвестная функция А(x), где x т.е.  [а, b] -  один из параметров величи­ны А;

2) находим главную часть приращения ΔA при изменении x на малую величину Δx; = dх, т. е. находим дифференциал dA функции A = А(x):dA -  f(x)dx, где f(x), определяемая из условия задачи, функция пере­менной x  (здесь также возможны различные упрощения);

3) считая, что dА ≈ ΔA при Δx 0, находим искомую величину путем интегрирования dA  в пределах от а до b:

A(b) = A = f(x)dx.

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЯ В ГЕОМЕТРИИ

Вычисление длины дуги плоской кривой

Прямоугольные координаты

Пусть в прямоугольных координатах дана плоская кривая AB, уравнение которой y = f(x), где a  ≤ x ≤ b. (рис 2)[7]

Под длиной дуги AB понимается предел, к которому стремиться длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной неограниченно возрастает, а длина наибольшего звена ее стремиться к нулю.

Применим схему I (метод сумм).

1.   Точками X = a, X, … , X = b (X ≤ X≤ … ≤ X) разобьем отрезок [a, b] на n частей. Пусть этим точкам соответствуют точки M = A, M , … , M = B на кривой AB. Проведем хорды MM, MM, … , MM , длины которых обозначим соответственно через ΔL, ΔL, … , ΔL.

Рис 2

 

Получим ломанную MMM … MM, длина которой равна L =  ΔL+ ΔL+ … + ΔL =  ΔL.

2.   Длину хорды (или звена ломанной) ΔL можно найти по теореме Пифагора из треугольника с катетами ΔX и ΔY:

ΔL = , где ΔX = X - X, ΔY = f(X) – f(X).

По теореме Лагранжа о конечном приращении функции ΔY = (C) ΔX, где C  (X, X). Поэтому

ΔL =  =  ,

а длина всей ломанной MMM … MM равна

L =  ΔL = .

Длина кривой AB, по определению, равна L = L =  ΔL. Заметим, что при ΔL  0 также и ΔX   0 (ΔL =  и следовательно | ΔX | < ΔL). Функция  непрерывна на отрезке [a, b], так как, по условию, непрерывна функция f (X). Следовательно, существует предел интегральной суммы L =  ΔL = , кода  max ΔX   0:

L =  = dx.

Таким образом, L = dx.

Пример: Найти длину окружности радиуса R. (рис 3)[5]

Решение:

Найдем ¼ часть ее длины от точки (0;R) до точки (R;0). Так как y = ,  ¼L =  dx = R arcsin = R .

Значит L = 2R.