Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физиология,зачет.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
324.13 Кб
Скачать

1.Современные представления о структурно-функциональной организации цнс . Физиологические свойства и функции нейронов.Гематоэнцефалический барьер.

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ ОРГАНИЗАЦИИ ЦНС включают в себя нейронную теорию

Нейронная теория

Нейроном называют нервную клетку со всеми ее отростками и с разветвлениями этих отростков до концевых аппаратов включительно.

Нервные импульсы воспринимаются телом нервной клетки и ее дендритами и отводятся по осевоцилиндрическому отростку. Этот закон движения нервного импульса от дендритов к аксону - закон динамической поляризации имеет некоторые исключения. Тем не менее можно считать твердо установленным, что большинство дендритов являются афферентными, а длинные аксоны - эфферентными.

Под нейронной теорией понимают общее учение о строении нервной ткани, согласно которому вся нервная система состоит из огромного количества структурных единиц - нейронов, соединенных в различные, более или менее сложные, комплексы.

Основные положения нейронной теории сводятся к следующему.

  • Вся функционирующая нервная ткань построена только из нейронов, т. е. из нервных клеток и их отростков.

  • Нейрон является генетической, анатомической и функциональной единицей.

  • Морфологически нейроны отделены друг от друга, они только соприкасаются при помощи контакта.

  • Важнейшей частью нейрона, его трофическим центром, является нервная клетка, так как все части нейрона, лишенные связи с ней, неизбежно гибнут; регенерация нервного волокна происходит за счет роста центрального отрезка его, сохранившего связь с клеткой.

Нервная клетка оказывает на свои отростки трофическое влияние. Если перерезать передний корешок, волокна которого образованы отростками клеток передних рогов спинного мозга, то периферический отрезок корешка в течение нескольких дней отмирает, перерождается и распадается до концевого аппарата в мышце включительно; центральный же отрезок корешка, волокна которого сохранили свою связь с нервными клетками, остается нормальным.

Перерезка заднего корешка тотчас кнаружи от спинномозгового узла вызывает перерождение всего периферического его отрезка. Волокна же, идущие в центральном направлении от клеток узла в спинной мозг и сохранившие свою связь с клетками узла, не подвергаются никаким изменениям. Если перерезать задний корешок центральнее спинномозгового узла, между узлом и спинным мозгом, то перерождению подвергаются волокна, вступающие в спинной мозг. Все эти факты говорят о том, что центральным элементом жизнедеятельности нейрона является нервная клетка.

Клиника со своей стороны дает многочисленные доказательства в пользу основных положений нейронной теории. Болезненные процессы анатомически очень часто ограничиваются пределами одного нейрона - центрального или периферического, оставляя нетронутым другой нейрон, физиологически связанный с пострадавшим.

Современные исследования внесли в нейронную теорию важные дополнения. Особенно много интересного дали работы, раскрывающие физиологическую роль синапсов.

Синапсом называют место стыка двух нейронов, где аксон одного нейрона вступает в связь с телом или дендритом другого. Морфологически синапсы имеют форму бляшек, колечек, кнопок, спиралей.

Все синапсы как в центральной, так и в периферической нервной системе состоят из трех элементов:

  1. пресинаптической мембраны

  2. постсинаптической мембраны

  3. и синаптической щели

В пресинаптической мембране синтезируются ацетилхолин или другие медиаторы. Деполяризация пресинаптической мембраны: поступающим потенциалом действия приводит к выделению медиатора в синаптическую щель и воздействию его на постсинаптическую мембрану. При этом медиатор может оказывать как возбуждающий, так и тормозящий эффект. Нервное окончание и постсинаптическая мембрана в нервно-мышечном синапсе называются концевой, или двигательной пластинкой.

Для объяснения процессов проведения возбуждения от нейрона к нейрону в настоящее время принята мембранно-ионная теория. Протоплазма нервных (и мышечных) клеток резко отличается по ионному составу от внеклеточной жидкости. Так, в протоплазме содержится примерно в 50 раз больше ионов калия и примерно в 10 раз меньше ионов натрия. При этом в состоянии покоя проницаемость плазматической мембраны, покрывающей клетку и ее отростки, для калия резко превышает проницаемость для натрия. В результате создается выраженное преобладание потока катионов калия из клетки во внеклеточную жидкость над потоком катионов натрия внутрь клетки. Следствием этого является возникновение потенциала покоя - положительного потенциала над мембраной по отношению к протоплазме клетки.

При стимуляции нейрона проницаемость мембраны для ионов натрия резко повышается и в клетку начинает поступать поток катионов натрия в значительно большем количестве, чем обратный поток катионов калия. В конечном итоге потенциал мембраны меняется, наружная ее поверхность становится электроотрицательной по отношению к протоплазме. Этот феномен носит название деполяризации как первой фазы потенциала действия. В дальнейшем в силу функционирования "натрий - калиевого насоса" баланс потоков К и Nа возвращается к исходному состоянию и наступает реполяризация.

В целом проведение импульса по нервному волокну имеет в своей основе обогащение протоплазмы ионами натрия и потерю ионов калия. "Выкачивание" ионов калия и "нагнетание" ионов натрия требуют затраты энергии, которая черпается из процессов распада и синтеза АТФ, увеличения потребления клеткой кислорода, глюкозы и т. д.

Чем толще нервное волокно, тем выше его проводимость. Максимальная скорость проведения составляет 100-120 м/с, в наименее миелинизированных волокнах проводимость равна 0,5-1м/с. 

Нейрон является основной структурной и функциональной единицей ЦНС. Он состоит из тела и большого количества отростков, которые имеют преобладающее направление и специализацию. Длинный отросток (аксон) в процессе онтогенетического развития достигает второго клетки, с которой устанавливается функциональная связь. Место отхождения аксона от тела нервной клетки называется начальным сегментом, или аксонного бугорком; этот участок аксона не имеет миелиновой оболочки и синаптических контактов. Главная функция аксона заключается в проведении нервных импульсов к клеток - нервных, мышечных, секреторных.Ближе к окончания аксон ветвится и образует тонкую кисть из конечных гилокаксонних терминалей. На конце каждого терминала образует синапс с постсинаптической клетки, ее сомой или дендритами. Специальная функция синапса состоит в передаче импульсов от одной клетки к другой. Кроме аксона нейрон имеет большое количество коротких древовидно разветвленных отростков - дендритов, которые размещены преимущественно в пределах серого вещества мозга. Функция дендритов состоит в восприятии синаптических влияний. На дендритах заканчиваются терминале аксонов, которые покрывают всю поверхность дендритов. Поверхность сомы и дендритов, покрытая синагитичнимы бляшками афферентных нейронов, образует рецепторную поверхность («дендритную зону») нейрона, которая принимает и передает импульсы. У тел большинства нейронов эта функция сочетается с функцией получения и использования питательных веществ, то есть с трофической функцией. В некоторых нейронов эти функции морфологически разрозненные и тело клетки не имеет отношения к восприятию и передаче сигналов. Рост отростков наблюдается не только в эмбриональный период, но и во взрослом организме при условии, что собственная клетка не повреждена. Основными функциями нейрона является восприятие и переработка информации, проведение ее в других клеток. Нейроны выполняют еще и трофическую функцию, направленную на регуляцию обмена веществ и питания как в аксонах и дендритах, так и при диффузии через синапсы физиологически активных веществ в мышцах и железистых клетках. Нейроны в зависимости от формы своих отростков, их направления, длины и разветвления делятся на афферентные, или чувствительные, промежуточные, или интернейроны, и эфферентные, проводящих импульсы на периферию. Афферентные нейроны имеют простую округлую форму сомы с одним отростком, который затем делится Т-образно: один отросток (видоизмененный дендрит) направляется на периферию и образует там чувствительные окончания (рецепторы), а второй - в ЦНС, где разветвляется на волокна, которые заканчиваются на других клетках (есть собственно аксоном клетки). Большая группа нейронов, аксоны которых выходят за пределы ЦНС, образуют периферические нервы и заканчиваются в исполнительных структурах (эффекторы) или периферических нервных узлах (ганглиях), обозначаются как эфферентные нейроны. Они имеют аксоны большого диаметра, покрытые миелиновой оболочкой и разветвляются только в конце, при подходе к органу, который иннервирует. Небольшое количество разветвлений локализуется и в начальной части аксона еще до выхода его из ЦНС (так называемые аксонного коллатерали). В ЦНС также большое количество нейронов, которые характеризуются тем, что их сома содержится внутри ЦНС и отростки не выходят из нее. Эти нейроны устанавливают связь только с другими нервными клетками ЦНС, а не с чувствительными или эфферентными структурами. Они словно вставлены между афферентными и эфферентными нейронами и «запирают» их. Это промежуточные нейроны (интернейроны). их можно разделить на короткоаксонни, которые устанавливают короткие связи между нервными клетками, и довгоаксонни - нейроны проводящих путей, соединяющих различные структуры ЦНС.

Среди гомеостатических приспособительных механизмов, при­званных защитить органы и ткани от чужеродных веществ и регули­ровать постоянство состава тканевой межклеточной жидкости, веду­щее место занимает гематоэнцефалический барьер. По определению Л. С. Штерн, гематоэнцефалический барьер объединяет совокупность физиологических механизмов и соответствующих ана­томических образований в центральной нервной системе, участвую­щих в регулировании состава цереброспинальной жидкости (ЦСЖ).

 В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее: 1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр — нервная клетка; 2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, ха­рактеризующим определенный физиологический механизм. Как лю­бой существующий в организме физиологический механизм, гема­тоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем; 3) среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятель­ности и метаболизма нервной ткани.

 

Гематоэнцефалический барьер регулирует проникновение из кро­ви в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.

 Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональ­ному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.

 Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств (Я. А. Росин) (схема 4.1). Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физи­ческих и физико-химических свойств, химического состава, физи­ологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.

 Ведущим компонентом морфологического субстрата гематоэнце­фалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения веще­ства в клетки мозга: через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь), и через стенку капилляра. У взрослого организма   основным путем движения   вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.

 Проницаемость гематоэнцефалического барьера зависит от фун­кционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

 Функциональная система гематоэнцефалического барьера представляется важным компонентом нейрогуморальной регуляции. В частности, через гематоэнцефалический барьер реализуется прин­цип обратной химической связи в организме. Именно таким образом осуществляется механизм гомеостатической регуляции состава внут­ренней среды организма.

 Регуляция функций гематоэнцефалического барьера осуществ­ляется высшими отделами ЦНС и гуморальными факторами. Зна­чительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе. В нейрогуморальной регуляции гематоэнце­фалического барьера важное значение имеют обменные процессы, в частности в ткани мозга. При различных видах церебральной патологии, например травмах, различных воспалительных пораже­ниях ткани мозга, возникает необходимость искусственного сниже­ния уровня проницаемости гематоэнцефалического барьера. Фарма­кологическими воздействиями можно увеличить или уменьшить про­никновение в мозг различных веществ, вводимых извне или циркулирующих в крови.