
- •1.Современные представления о структурно-функциональной организации цнс . Физиологические свойства и функции нейронов.Гематоэнцефалический барьер.
- •Нейронная теория
- •2.Межнейронные взаимодействия. Синаптическая организация цнс.Виды синапсов, хараетеристика медиаторов, медиаторные системы мозга.
- •3. Механизмы формирования впсп, тпсп. Особенности возникновения и распространения возбуждения в цнс.
- •5.Основные принципы координационной деятельности цнс. Принцип доминанты.
- •6.Понятие о нервном центре. Свойства нервных центров.
- •7.Рефлекторный принцип деятельности цнс (понятие о рефлекторной дуге,рефлекторном кольце) .Классификация рефлексов.
- •Безусловные
- •Нейронная организация простейшего рефлекса
- •Условные[
- •Аксон-рефлекс
- •Патологические рефлексы
- •8. Спинной мозг. Его нейронная и синаптическая оршанизация. Функции спинного мозга.
- •11. Структурно-функциональная организация среднего мозга, его участие в осуществлении познотонической деятельности мышц. Статическик и стато кинетические рефлексы.
- •12. Ретикулярная формация ствола мозга, ее характеристика, функции. Роль ретикулярной формации в регуляции вегетативных функций организма.
- •13. Мозжечок.Его функция.Симптомы частичного и полного удаления мозжечка. Роль мохжечка в регуляции мышечного тонуса и движений.
- •14. Базальные ганглии. Их участие в регуляции мышечного тонуса, сложных двигательных программ.Синдром паркинсона, роль дофаминергических путей в его генезе.
- •15. Современные представления о структурно-функциональной организации коры больших полушарий.Характеристика корковых полей( функциональная и цитоархитектоническая)
- •16. Основные физиологические свойства и функции вегетативной нервной системы. Особенности рефлекторной дуги вегетативного рефлекса.
- •18. Влияние симпатического и парасимпатическог отделов внс на фунции органов и систем организма , относительность антагонизма отделов внс.
- •19 Вегетативные рефлексы . Центры регуляции вегетативных функций. Их иерархия.
- •20. Современные электрофизиологические методы исследований функций Цнс. Стереоатаксическая техника.
1.Современные представления о структурно-функциональной организации цнс . Физиологические свойства и функции нейронов.Гематоэнцефалический барьер.
СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ ОРГАНИЗАЦИИ ЦНС включают в себя нейронную теорию
Нейронная теория
Нейроном называют нервную клетку со всеми ее отростками и с разветвлениями этих отростков до концевых аппаратов включительно.
Нервные импульсы воспринимаются телом нервной клетки и ее дендритами и отводятся по осевоцилиндрическому отростку. Этот закон движения нервного импульса от дендритов к аксону - закон динамической поляризации имеет некоторые исключения. Тем не менее можно считать твердо установленным, что большинство дендритов являются афферентными, а длинные аксоны - эфферентными.
Под нейронной теорией понимают общее учение о строении нервной ткани, согласно которому вся нервная система состоит из огромного количества структурных единиц - нейронов, соединенных в различные, более или менее сложные, комплексы.
Основные положения нейронной теории сводятся к следующему.
Вся функционирующая нервная ткань построена только из нейронов, т. е. из нервных клеток и их отростков.
Нейрон является генетической, анатомической и функциональной единицей.
Морфологически нейроны отделены друг от друга, они только соприкасаются при помощи контакта.
Важнейшей частью нейрона, его трофическим центром, является нервная клетка, так как все части нейрона, лишенные связи с ней, неизбежно гибнут; регенерация нервного волокна происходит за счет роста центрального отрезка его, сохранившего связь с клеткой.
Нервная клетка оказывает на свои отростки трофическое влияние. Если перерезать передний корешок, волокна которого образованы отростками клеток передних рогов спинного мозга, то периферический отрезок корешка в течение нескольких дней отмирает, перерождается и распадается до концевого аппарата в мышце включительно; центральный же отрезок корешка, волокна которого сохранили свою связь с нервными клетками, остается нормальным.
Перерезка заднего корешка тотчас кнаружи от спинномозгового узла вызывает перерождение всего периферического его отрезка. Волокна же, идущие в центральном направлении от клеток узла в спинной мозг и сохранившие свою связь с клетками узла, не подвергаются никаким изменениям. Если перерезать задний корешок центральнее спинномозгового узла, между узлом и спинным мозгом, то перерождению подвергаются волокна, вступающие в спинной мозг. Все эти факты говорят о том, что центральным элементом жизнедеятельности нейрона является нервная клетка.
Клиника со своей стороны дает многочисленные доказательства в пользу основных положений нейронной теории. Болезненные процессы анатомически очень часто ограничиваются пределами одного нейрона - центрального или периферического, оставляя нетронутым другой нейрон, физиологически связанный с пострадавшим.
Современные исследования внесли в нейронную теорию важные дополнения. Особенно много интересного дали работы, раскрывающие физиологическую роль синапсов.
Синапсом называют место стыка двух нейронов, где аксон одного нейрона вступает в связь с телом или дендритом другого. Морфологически синапсы имеют форму бляшек, колечек, кнопок, спиралей.
Все синапсы как в центральной, так и в периферической нервной системе состоят из трех элементов:
пресинаптической мембраны
постсинаптической мембраны
и синаптической щели
В пресинаптической мембране синтезируются ацетилхолин или другие медиаторы. Деполяризация пресинаптической мембраны: поступающим потенциалом действия приводит к выделению медиатора в синаптическую щель и воздействию его на постсинаптическую мембрану. При этом медиатор может оказывать как возбуждающий, так и тормозящий эффект. Нервное окончание и постсинаптическая мембрана в нервно-мышечном синапсе называются концевой, или двигательной пластинкой.
Для объяснения процессов проведения возбуждения от нейрона к нейрону в настоящее время принята мембранно-ионная теория. Протоплазма нервных (и мышечных) клеток резко отличается по ионному составу от внеклеточной жидкости. Так, в протоплазме содержится примерно в 50 раз больше ионов калия и примерно в 10 раз меньше ионов натрия. При этом в состоянии покоя проницаемость плазматической мембраны, покрывающей клетку и ее отростки, для калия резко превышает проницаемость для натрия. В результате создается выраженное преобладание потока катионов калия из клетки во внеклеточную жидкость над потоком катионов натрия внутрь клетки. Следствием этого является возникновение потенциала покоя - положительного потенциала над мембраной по отношению к протоплазме клетки.
При стимуляции нейрона проницаемость мембраны для ионов натрия резко повышается и в клетку начинает поступать поток катионов натрия в значительно большем количестве, чем обратный поток катионов калия. В конечном итоге потенциал мембраны меняется, наружная ее поверхность становится электроотрицательной по отношению к протоплазме. Этот феномен носит название деполяризации как первой фазы потенциала действия. В дальнейшем в силу функционирования "натрий - калиевого насоса" баланс потоков К и Nа возвращается к исходному состоянию и наступает реполяризация.
В целом проведение импульса по нервному волокну имеет в своей основе обогащение протоплазмы ионами натрия и потерю ионов калия. "Выкачивание" ионов калия и "нагнетание" ионов натрия требуют затраты энергии, которая черпается из процессов распада и синтеза АТФ, увеличения потребления клеткой кислорода, глюкозы и т. д.
Чем толще нервное волокно, тем выше его проводимость. Максимальная скорость проведения составляет 100-120 м/с, в наименее миелинизированных волокнах проводимость равна 0,5-1м/с.
Нейрон является основной структурной и функциональной единицей ЦНС. Он состоит из тела и большого количества отростков, которые имеют преобладающее направление и специализацию. Длинный отросток (аксон) в процессе онтогенетического развития достигает второго клетки, с которой устанавливается функциональная связь. Место отхождения аксона от тела нервной клетки называется начальным сегментом, или аксонного бугорком; этот участок аксона не имеет миелиновой оболочки и синаптических контактов. Главная функция аксона заключается в проведении нервных импульсов к клеток - нервных, мышечных, секреторных.Ближе к окончания аксон ветвится и образует тонкую кисть из конечных гилокаксонних терминалей. На конце каждого терминала образует синапс с постсинаптической клетки, ее сомой или дендритами. Специальная функция синапса состоит в передаче импульсов от одной клетки к другой. Кроме аксона нейрон имеет большое количество коротких древовидно разветвленных отростков - дендритов, которые размещены преимущественно в пределах серого вещества мозга. Функция дендритов состоит в восприятии синаптических влияний. На дендритах заканчиваются терминале аксонов, которые покрывают всю поверхность дендритов. Поверхность сомы и дендритов, покрытая синагитичнимы бляшками афферентных нейронов, образует рецепторную поверхность («дендритную зону») нейрона, которая принимает и передает импульсы. У тел большинства нейронов эта функция сочетается с функцией получения и использования питательных веществ, то есть с трофической функцией. В некоторых нейронов эти функции морфологически разрозненные и тело клетки не имеет отношения к восприятию и передаче сигналов. Рост отростков наблюдается не только в эмбриональный период, но и во взрослом организме при условии, что собственная клетка не повреждена. Основными функциями нейрона является восприятие и переработка информации, проведение ее в других клеток. Нейроны выполняют еще и трофическую функцию, направленную на регуляцию обмена веществ и питания как в аксонах и дендритах, так и при диффузии через синапсы физиологически активных веществ в мышцах и железистых клетках. Нейроны в зависимости от формы своих отростков, их направления, длины и разветвления делятся на афферентные, или чувствительные, промежуточные, или интернейроны, и эфферентные, проводящих импульсы на периферию. Афферентные нейроны имеют простую округлую форму сомы с одним отростком, который затем делится Т-образно: один отросток (видоизмененный дендрит) направляется на периферию и образует там чувствительные окончания (рецепторы), а второй - в ЦНС, где разветвляется на волокна, которые заканчиваются на других клетках (есть собственно аксоном клетки). Большая группа нейронов, аксоны которых выходят за пределы ЦНС, образуют периферические нервы и заканчиваются в исполнительных структурах (эффекторы) или периферических нервных узлах (ганглиях), обозначаются как эфферентные нейроны. Они имеют аксоны большого диаметра, покрытые миелиновой оболочкой и разветвляются только в конце, при подходе к органу, который иннервирует. Небольшое количество разветвлений локализуется и в начальной части аксона еще до выхода его из ЦНС (так называемые аксонного коллатерали). В ЦНС также большое количество нейронов, которые характеризуются тем, что их сома содержится внутри ЦНС и отростки не выходят из нее. Эти нейроны устанавливают связь только с другими нервными клетками ЦНС, а не с чувствительными или эфферентными структурами. Они словно вставлены между афферентными и эфферентными нейронами и «запирают» их. Это промежуточные нейроны (интернейроны). их можно разделить на короткоаксонни, которые устанавливают короткие связи между нервными клетками, и довгоаксонни - нейроны проводящих путей, соединяющих различные структуры ЦНС.
Среди гомеостатических приспособительных механизмов, призванных защитить органы и ткани от чужеродных веществ и регулировать постоянство состава тканевой межклеточной жидкости, ведущее место занимает гематоэнцефалический барьер. По определению Л. С. Штерн, гематоэнцефалический барьер объединяет совокупность физиологических механизмов и соответствующих анатомических образований в центральной нервной системе, участвующих в регулировании состава цереброспинальной жидкости (ЦСЖ).
В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее: 1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр — нервная клетка; 2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, характеризующим определенный физиологический механизм. Как любой существующий в организме физиологический механизм, гематоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем; 3) среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятельности и метаболизма нервной ткани.
Гематоэнцефалический барьер регулирует проникновение из крови в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганизмов, токсинов.
Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.
Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств (Я. А. Росин) (схема 4.1). Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физических и физико-химических свойств, химического состава, физиологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.
Ведущим компонентом морфологического субстрата гематоэнцефалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения вещества в клетки мозга: через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь), и через стенку капилляра. У взрослого организма основным путем движения вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.
Проницаемость гематоэнцефалического барьера зависит от функционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.
Функциональная система гематоэнцефалического барьера представляется важным компонентом нейрогуморальной регуляции. В частности, через гематоэнцефалический барьер реализуется принцип обратной химической связи в организме. Именно таким образом осуществляется механизм гомеостатической регуляции состава внутренней среды организма.
Регуляция функций гематоэнцефалического барьера осуществляется высшими отделами ЦНС и гуморальными факторами. Значительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе. В нейрогуморальной регуляции гематоэнцефалического барьера важное значение имеют обменные процессы, в частности в ткани мозга. При различных видах церебральной патологии, например травмах, различных воспалительных поражениях ткани мозга, возникает необходимость искусственного снижения уровня проницаемости гематоэнцефалического барьера. Фармакологическими воздействиями можно увеличить или уменьшить проникновение в мозг различных веществ, вводимых извне или циркулирующих в крови.