
- •Введение
- •Тема 1 Введение. Предмет гидравлики. История развития гидравлики. Основные физико-механические свойства жидкостей и газов
- •1.1 Предмет гидравлики
- •1.2 История развития
- •1.3 Основные понятия
- •1.4 Основные физические свойства жидкостей
- •1.5 Выбор рабочей жидкости для гидросистем
- •1.6 Неньютоновские жидкости
- •Тема 2 Гидростатика
- •2.1 Понятие гидростатического давления
- •2.2 Свойства гидростатического давления
- •2.3 Поверхность уровня
- •2.4 Равновесие жидкости в поле земного тяготения
- •2.5 Основное уравнение гидростатики
- •2.6 Закон Паскаля и его технические применение
- •2.7 Абсолютное и избыточное давления. Вакуум
- •2.8 Приборы для измерения давления
- •2.9 Силы давления жидкости на плоскую стенку
- •2.10 Сила давления жидкости на криволинейную стенку
- •2.11 Закон Архимеда. Плавание тел
- •2.12 Гидростатический парадокс
- •Тема 3 Гидродинамика
- •3.1 Основные понятия
- •3.2 Расход потока жидкости
- •3.3 Закон сохранения массы. Уравнение неразрывности
- •3.4 Уравнение Бернулли для установившегося движения идеальной жидкости
- •3.5 Геометрическая интерпретация уравнения Бернулли
- •3.6 Энергетическая интерпретация уравнения Бернулли
- •3.7 Уравнение Бернулли для потока идеальной жидкости
- •3.8 Уравнение Бернулли для потока реальной (вязкой) жидкости
- •3.9 Разность напоров и потери напора
- •3.10 Кавитация
- •3.11 Моделирование гидродинамических явлений
- •3.12.1 Режимы течения жидкости в трубах
- •3.12.2 Основные особенности турбулентного режима движения
- •3.12.3 Возникновение турбулентного течения жидкости
- •3.12.4 Возникновение ламинарного режима
- •3.13 Гидравлические сопротивления в потоках жидкости
- •3.13.2 Гидравлические потери по длине
- •3.13.3 Течение жидкости в шероховатых трубопроводах
- •Выводы из графиков Никурадзе
- •3.13.4 Ламинарное течение жидкости в трубах различного сечения
- •3.13.5 Местные гидравлические сопротивления
- •3) Постепенное расширение потока
- •4) Постепенное расширение потока
- •5) Поворот потока
- •3.14 Истечение жидкости из отверстий и насадков
- •3.14.1 Сжатие струи
- •3.14.2 Истечение через малое отверстие в тонкой стенке
- •3.14.3 Истечение через насадки
- •3.15 Гидравлический расчет трубопроводов
- •3.15.1 Виды трубопроводов
- •3.15.2 Расчет простого трубопровода
- •3.15.3 Последовательное соединение трубопроводов
- •3.15.4 Параллельное соединение трубопроводов
- •Если сечение трубы постоянно, то
- •3.16.2 Гидравлический удар в трубопроводах
- •3.16.3 Способы гашения и примеры использования гидравлического удара
- •Тема 4 Гидромашины
- •4.1 Общие сведения и классификация
- •4.2 Основные параметры гидромашин
- •4.3 Лопастные гидромашины
- •4.3.1 Кинематика движения жидкости
- •4.3.2 Основное уравнение лопастных машин
- •4.3.3 Характеристики лопастных машин
- •4.3.4 Эксплуатационные расчеты центробежных насосов
- •4.3.5 Конструктивные разновидности лопастных насосов
- •Центробежные консольные насосы
- •Осевые насосы
- •Вихревые насосы
- •4.4 Гидродинамические передачи
- •4.4.1 Общие сведения о гидродинамических передачах
- •4.4.2 Устройство и рабочий процесс гидромуфты
- •4.4.3 Устройство и рабочий процесс гидротрансформатора
- •4.5 Объемные гидромашины
- •4.5.1 Основные понятия
- •4.5.2 Классификация объемных гидромашин
- •4.5.3 Конструктивные разновидности объемных насосов Возвратно-поступательные насосы
- •Роторные радиально-поршневые гидромашины
- •Радиально-поршневой регулируемый насос с цапфенным распределением жидкости.
- •Радиально-поршневой насос с клапанным распределением жидкости.
- •Радиально-поршневой высокомоментный гидромотор.
- •Роторные аксиально-поршневые гидромашины
- •Шестеренные гидромашины
- •Насосы с шестернями внутреннего зацепления.
- •Винтовые насосы.
- •Пластинчатые гидромашины
- •Пластинчатые насосы одинарного действия.
- •Пластинчатые насосы двукратного действия.
- •4.5.4 Гидродвигатели прямолинейного и поворотного движения
- •Гидродвигатели прямолинейного движения
- •Гидродвигатели поворотного движения
- •Тема 5 Объемный гидропривод
- •5.1 Основные понятия
- •5.2 Принцип действия объемного гидропривода
- •5.3 Условные графические обозначения элементов
- •5.4 Классификация гидроприводов
- •1. По характеру движения выходного звена гидродвигателя:
- •2. По возможности регулирования:
- •3. По схеме циркуляции рабочей жидкости:
- •4. По источнику подачи рабочей жидкости:
- •5.5 Преимущества и недостатки гидропривода
- •5.6 Расчет простейшего гидропривода
- •5.6.2 Расчет простейшего поступательного гидропривода
- •5.7.1 Гидроприводы с дроссельным регулированием
- •1 Насос; 2 переливной клапан; 3 гидрораспределитель;
- •4 Гидроцилиндр; 5 гидродроссель; 6 бак
- •5.7.2 Гидропривод с объемным (машинным) регулированием
- •5.7.3 Гидропривод с объемно-дроссельным регулированием
- •5.7.4 Способы стабилизации скорости в гидроприводах
- •5.7.5 Системы синхронизации движения выходных звеньев
- •5.8 Следящие гидроприводы
- •5.8.1 Принцип действия и области применения
- •5.8.2 Следящие гидроприводы с дополнительными каскадами усиления
- •5.8.2 Электрогидравлические следящие приводы
- •6.1 Гидравлические линии
- •6.1.1 Трубопроводы
- •6.1.2 Соединения
- •6.2 Гидроаппаратура станков
- •6.2.1 Гидродроссели
- •6.2.2 Гидроклапаны
- •Направляющие гидроклапаны
- •Регулирующие гидроклапаны
- •6.2.3 Гидрораспределители
- •4/3 Типа пг74-24м с ручным управлением: 1, 9 – крышки корпуса; 2 – палец; 3 – ось; 4 – рукоятка; 5 – шарик; 6 – пружина; 7 – корпус; 8 – золотник; 10 – втулка
- •6.3 Вспомогательные устройства гидросистем
- •6.3.1 Гидробаки
- •6.3.2 Аппараты теплообменные
- •6.3.3 Фильтры
- •6.3.4 Гидроаккумуляторы
- •Содержание
- •Список литературы
2.4 Равновесие жидкости в поле земного тяготения
В качестве объемной силы в поле земного тяготения выступает сила тяжести. Полное ускорение объемных сил равно ускорению свободного падения g = 9,81 м/c2.
В выбранной системе координат проекции единичной объемной силы на оси Ox, Oy и Oz будут следующими:
.
Знак «минус» в ускорении свободного падения соответствует направлению силы тяжести в отрицательную сторону оси Oz.
Подставляя значения X, Y, Z в уравнение поверхности уровня, получим
и следовательно,
,
где с – произвольная постоянная.
Таким образом, поверхностью уровня (поверхность равного давления) в однородной покоящейся жидкости будет любая горизонтальная плоскость, в том числе и свободная поверхность, независимо от формы сосуда или водоема. Горизонтальной плоскостью будет также граница раздела двух несмешивающихся жидкостей (рисунок 2.4).
Рисунок 2.4 – Поверхность равного давления
Давление в точке А равно давлению в точке В, так как обе точки лежат на одной и той же поверхности уровня (поверхности равного давления).
2.5 Основное уравнение гидростатики
Рассмотрим случай равновесия жидкости, когда на неё действует одна сила тяжести, и получим уравнение, позволяющее находить гидростатическое давление в любой точке рассматриваемого объёма жидкости. Пусть жидкость находится в сосуде (рисунок 2.5) и на её свободную поверхность действует давление р0. Найдём гидростатическое давление р в произвольно взятой точке М, расположенной на глубине h.
Выделим около точки М элементарную горизонтальную площадку dS и построим на ней вертикальный цилиндрический объём высотой h. Рассмотрим условия равновесия указанного объёма жидкости, выделенного из общего объёма. Давление жидкости на нижнее основание цилиндра теперь будет внешним и направлено по нормали внутрь объёма, т.е. вверх.
Рисунок 2.5 – Схема для вывода основного уравнения гидростатики
Запишем сумму сил, действующих на рассматриваемый объём в проекции на вертикаль
.
Последний член уравнения представляет собой вес жидкости в указанном объёме. Сократив выражение на dS и перегруппировав члены, найдём
Полученное уравнение называют основным уравнением гидростатики; по нему можно подсчитывать давление в любой точке покоящейся жидкости.
2.6 Закон Паскаля и его технические применение
Из основного уравнения гидростатики видно, что на сколько увеличивается давление на свободной поверхности р0, на столько же увеличивается и абсолютное давление в точке жидкости, т. е. внешнее давление р0, приложенное к жидкости в замкнутом сосуде, передается внутри жидкости во все точки без изменения. В этом и заключается закон Паскаля. На его использовании основано действие простейших гидравлических машин: гидравлических прессов, домкратов, подъемников, аккумуляторов, мультипликаторов (повышающих давления) и др.
Гидравлический пресс (рисунок 2.6, а) является одной из наиболее распространенных гидравлических машин и применяется для обработки материалов давлением. Если к поршню площадью S1, двигающемуся в малом цилиндре А, приложить силу Р1 , то жидкость получит добавочное давление p1 = P1/ S1.
а) б)
Рисунок 2.6 - Гидравлический пресс (а), гидравлический аккумулятор (б).
По закону Паскаля это давление распространится во всей жидкости без изменения и передастся на поршень большей площади S2, двигающийся внутри цилиндра В. Величина усилия, с которым поршень в цилиндре В будет двигаться вверх, составит
Таким
образом, сила Р2
во столько раз больше силы Р1,
во сколько раз площадь поршня в цилиндре
В
больше площади поршня в цилиндре А.
В действительности вследствие трения
в цилиндрах сила Р2
будет несколько меньше. Влияние трения
учитывается введением в формулу
коэффициента полезного действия
.
Давление рабочей жидкости (обычно это масло) в гидравлических прессах создается насосом и составляет 20...30 МПа (200... 300 кгс/см2). Однако в отдельных случаях, например для синтеза алмазов, оно достигает 450 МПа (4500 кгс/см2). Наиболее мощные гидравлические прессы для объемной штамповки развивают усилие 735 МН (примерно 75 000 т).
На принципе гидравлического пресса основано устройство гидравлических домкратов и подъемников, используемых для подъема грузов.
Гидравлический аккумулятор (рисунок 2.6, б) состоит из рабочего цилиндра 1, в котором движется массивный плунжер 2 площадью сечения S1. К плунжеру при помощи коромысла 3 подвешены грузы 4. В рабочий цилиндр 1 по трубопроводу 5 подается вода или масло. Под действием давления жидкости плунжер 2 в цилиндре движется вверх. Если обозначим вес плунжера с грузами G, а высоту поднятия h, то запас потенциальной энергии аккумулятора составит Gh. Открытием крана на трубопроводе 6 (при закрытом кране трубопровода 5) сжатая в аккумуляторе жидкость может быть направлена к рабочей машине (например, гидравлическому домкрату, подъемнику и т. п.), где за счет запаса потенциальной энергии будет совершена полезная работа.
Давление жидкости, необходимое для зарядки аккумулятора, должно быть
p1 = G/ S1,
а рабочее давление при разрядке
р2 =η∙p1,
где η<1 – КПД гидравлического аккумулятора, учитывающий потери давления за счет трения.