
- •Введение
- •Тема 1 Введение. Предмет гидравлики. История развития гидравлики. Основные физико-механические свойства жидкостей и газов
- •1.1 Предмет гидравлики
- •1.2 История развития
- •1.3 Основные понятия
- •1.4 Основные физические свойства жидкостей
- •1.5 Выбор рабочей жидкости для гидросистем
- •1.6 Неньютоновские жидкости
- •Тема 2 Гидростатика
- •2.1 Понятие гидростатического давления
- •2.2 Свойства гидростатического давления
- •2.3 Поверхность уровня
- •2.4 Равновесие жидкости в поле земного тяготения
- •2.5 Основное уравнение гидростатики
- •2.6 Закон Паскаля и его технические применение
- •2.7 Абсолютное и избыточное давления. Вакуум
- •2.8 Приборы для измерения давления
- •2.9 Силы давления жидкости на плоскую стенку
- •2.10 Сила давления жидкости на криволинейную стенку
- •2.11 Закон Архимеда. Плавание тел
- •2.12 Гидростатический парадокс
- •Тема 3 Гидродинамика
- •3.1 Основные понятия
- •3.2 Расход потока жидкости
- •3.3 Закон сохранения массы. Уравнение неразрывности
- •3.4 Уравнение Бернулли для установившегося движения идеальной жидкости
- •3.5 Геометрическая интерпретация уравнения Бернулли
- •3.6 Энергетическая интерпретация уравнения Бернулли
- •3.7 Уравнение Бернулли для потока идеальной жидкости
- •3.8 Уравнение Бернулли для потока реальной (вязкой) жидкости
- •3.9 Разность напоров и потери напора
- •3.10 Кавитация
- •3.11 Моделирование гидродинамических явлений
- •3.12.1 Режимы течения жидкости в трубах
- •3.12.2 Основные особенности турбулентного режима движения
- •3.12.3 Возникновение турбулентного течения жидкости
- •3.12.4 Возникновение ламинарного режима
- •3.13 Гидравлические сопротивления в потоках жидкости
- •3.13.2 Гидравлические потери по длине
- •3.13.3 Течение жидкости в шероховатых трубопроводах
- •Выводы из графиков Никурадзе
- •3.13.4 Ламинарное течение жидкости в трубах различного сечения
- •3.13.5 Местные гидравлические сопротивления
- •3) Постепенное расширение потока
- •4) Постепенное расширение потока
- •5) Поворот потока
- •3.14 Истечение жидкости из отверстий и насадков
- •3.14.1 Сжатие струи
- •3.14.2 Истечение через малое отверстие в тонкой стенке
- •3.14.3 Истечение через насадки
- •3.15 Гидравлический расчет трубопроводов
- •3.15.1 Виды трубопроводов
- •3.15.2 Расчет простого трубопровода
- •3.15.3 Последовательное соединение трубопроводов
- •3.15.4 Параллельное соединение трубопроводов
- •Если сечение трубы постоянно, то
- •3.16.2 Гидравлический удар в трубопроводах
- •3.16.3 Способы гашения и примеры использования гидравлического удара
- •Тема 4 Гидромашины
- •4.1 Общие сведения и классификация
- •4.2 Основные параметры гидромашин
- •4.3 Лопастные гидромашины
- •4.3.1 Кинематика движения жидкости
- •4.3.2 Основное уравнение лопастных машин
- •4.3.3 Характеристики лопастных машин
- •4.3.4 Эксплуатационные расчеты центробежных насосов
- •4.3.5 Конструктивные разновидности лопастных насосов
- •Центробежные консольные насосы
- •Осевые насосы
- •Вихревые насосы
- •4.4 Гидродинамические передачи
- •4.4.1 Общие сведения о гидродинамических передачах
- •4.4.2 Устройство и рабочий процесс гидромуфты
- •4.4.3 Устройство и рабочий процесс гидротрансформатора
- •4.5 Объемные гидромашины
- •4.5.1 Основные понятия
- •4.5.2 Классификация объемных гидромашин
- •4.5.3 Конструктивные разновидности объемных насосов Возвратно-поступательные насосы
- •Роторные радиально-поршневые гидромашины
- •Радиально-поршневой регулируемый насос с цапфенным распределением жидкости.
- •Радиально-поршневой насос с клапанным распределением жидкости.
- •Радиально-поршневой высокомоментный гидромотор.
- •Роторные аксиально-поршневые гидромашины
- •Шестеренные гидромашины
- •Насосы с шестернями внутреннего зацепления.
- •Винтовые насосы.
- •Пластинчатые гидромашины
- •Пластинчатые насосы одинарного действия.
- •Пластинчатые насосы двукратного действия.
- •4.5.4 Гидродвигатели прямолинейного и поворотного движения
- •Гидродвигатели прямолинейного движения
- •Гидродвигатели поворотного движения
- •Тема 5 Объемный гидропривод
- •5.1 Основные понятия
- •5.2 Принцип действия объемного гидропривода
- •5.3 Условные графические обозначения элементов
- •5.4 Классификация гидроприводов
- •1. По характеру движения выходного звена гидродвигателя:
- •2. По возможности регулирования:
- •3. По схеме циркуляции рабочей жидкости:
- •4. По источнику подачи рабочей жидкости:
- •5.5 Преимущества и недостатки гидропривода
- •5.6 Расчет простейшего гидропривода
- •5.6.2 Расчет простейшего поступательного гидропривода
- •5.7.1 Гидроприводы с дроссельным регулированием
- •1 Насос; 2 переливной клапан; 3 гидрораспределитель;
- •4 Гидроцилиндр; 5 гидродроссель; 6 бак
- •5.7.2 Гидропривод с объемным (машинным) регулированием
- •5.7.3 Гидропривод с объемно-дроссельным регулированием
- •5.7.4 Способы стабилизации скорости в гидроприводах
- •5.7.5 Системы синхронизации движения выходных звеньев
- •5.8 Следящие гидроприводы
- •5.8.1 Принцип действия и области применения
- •5.8.2 Следящие гидроприводы с дополнительными каскадами усиления
- •5.8.2 Электрогидравлические следящие приводы
- •6.1 Гидравлические линии
- •6.1.1 Трубопроводы
- •6.1.2 Соединения
- •6.2 Гидроаппаратура станков
- •6.2.1 Гидродроссели
- •6.2.2 Гидроклапаны
- •Направляющие гидроклапаны
- •Регулирующие гидроклапаны
- •6.2.3 Гидрораспределители
- •4/3 Типа пг74-24м с ручным управлением: 1, 9 – крышки корпуса; 2 – палец; 3 – ось; 4 – рукоятка; 5 – шарик; 6 – пружина; 7 – корпус; 8 – золотник; 10 – втулка
- •6.3 Вспомогательные устройства гидросистем
- •6.3.1 Гидробаки
- •6.3.2 Аппараты теплообменные
- •6.3.3 Фильтры
- •6.3.4 Гидроаккумуляторы
- •Содержание
- •Список литературы
Тема 2 Гидростатика
2.1 Понятие гидростатического давления
Гидростатика — это раздел гидравлики, изучающий жидкость в состоянии покоя. Она изучает законы равновесия жидкости и распределения в ней давления.
Одной из основных теоретических задач гидростатики является вопрос о характере распределения давления в объеме жидкости, которая в самом общем случае может находиться в абсолютном или относительном покое.
Абсолютный
покой. Если
жидкость находится в покое (скорость
движения равна нулю, т.е.
=0)
относительно системы координат, жестко
связанной с Землей, такой покой называется
абсолютным. Например, жидкость, находящаяся
в покое в любом аппарате или емкости
(резервуаре), которые в свою очередь
находятся в неподвижном состоянии
относительно Земли.
Относительный покой. Если жидкость находится в покое (скорость движения равна нулю, т.е. =0) относительно системы координат, которая движется относительно Земли, такой покой называется относительным. Например, жидкость, находящаяся в покое в любом аппарате или емкости (резервуаре), которые свою очередь находятся в движении относительно Земли. При этом, движение может быть равноускоренным или с постоянной скоростью.
Когда жидкость находится в покое, то она характеризуется свойствами, очень близкими к свойствам идеальной жидкости. Вследствие текучести в жидкости действуют силы не сосредоточенные, а непрерывно распределённые по её объёму или поверхности.
На жидкость в состоянии покоя действуют следующие силы:
массовые силы, пропорциональны массе жидкости – это силы тяжести и инерции;
поверхностные силы (атмосферное давление, давление поршня или других предметов, находящихся на поверхности), которые непрерывно распределены по поверхности жидкости и при равномерном их распределении пропорциональны площади этой поверхности. Эти силы возникают из-за воздействия соседних объёмов жидкости или же воздействия других тел (твёрдых или газообразных), соприкасающихся с данной жидкостью.
Когда жидкость находится в равновесии, то под действием внешних сил в жидкости возникает давление. Давление в неподвижной жидкости называется гидростатическим давлением.
Рассмотрим некоторый объем жидкости массой М, находящийся в состоянии относительного покоя (рисунок 2.1).
Рисунок 2.1 – Схема для определения гидростатического давления
Рассечем
объем, занимаемый жидкостью, произвольной
плоскостью АВ на две части, содержащие
соответственно массы М1
и М2,
и отбросим одну из них (например, правую).
Чтобы сохранить равновесие оставшейся
в левой части массы жидкости М1,
необходимо приложить силу, эквивалентную
действию отброшенной массы М2.
Эта сила ∆F
будет равномерно распределена по площади
сечения ∆S.
Тогда отношение
представляющее собой среднюю силу,
действующую на единицу площади ∆S,
будет называться средним гидростатическим
давлением.
В общем случае величина среднего давления рср будет тем меньше отличаться от истинного значения давления, например в точке а, чем меньше будет площадь сечения ∆S, т.е. истинное гидростатическое давление равно
Сила, действующая на единицу площади ∆S при стремлении (стягивании) этой площади к размерам точки А, называется силой гидростатического давления.
За единицу давления принят Паскаль – давление, вызываемое силой 1Н, равномерно распределённой по нормальной к ней поверхности площадью 1 м2.
В технике в настоящее время продолжают применять также систему единиц метр, килограмм-сила, секунда (МКГСС), в которой за единицу давления принимается 1кгс/ м2. Широко используют также внесистемные единицы – техническую атмосферу и бар:
Па;
;
.
Давление часто выражается высотой столба жидкости, которая называется пьезометрической высотой или пьезометрическим напором
,
м.
Пьезометрическая высота – это высота такого столба жидкости, который своим весом способен создать давление, равное гидростатическому давлению в рассматриваемой точке.
;