
- •Введение
- •Тема 1 Введение. Предмет гидравлики. История развития гидравлики. Основные физико-механические свойства жидкостей и газов
- •1.1 Предмет гидравлики
- •1.2 История развития
- •1.3 Основные понятия
- •1.4 Основные физические свойства жидкостей
- •1.5 Выбор рабочей жидкости для гидросистем
- •1.6 Неньютоновские жидкости
- •Тема 2 Гидростатика
- •2.1 Понятие гидростатического давления
- •2.2 Свойства гидростатического давления
- •2.3 Поверхность уровня
- •2.4 Равновесие жидкости в поле земного тяготения
- •2.5 Основное уравнение гидростатики
- •2.6 Закон Паскаля и его технические применение
- •2.7 Абсолютное и избыточное давления. Вакуум
- •2.8 Приборы для измерения давления
- •2.9 Силы давления жидкости на плоскую стенку
- •2.10 Сила давления жидкости на криволинейную стенку
- •2.11 Закон Архимеда. Плавание тел
- •2.12 Гидростатический парадокс
- •Тема 3 Гидродинамика
- •3.1 Основные понятия
- •3.2 Расход потока жидкости
- •3.3 Закон сохранения массы. Уравнение неразрывности
- •3.4 Уравнение Бернулли для установившегося движения идеальной жидкости
- •3.5 Геометрическая интерпретация уравнения Бернулли
- •3.6 Энергетическая интерпретация уравнения Бернулли
- •3.7 Уравнение Бернулли для потока идеальной жидкости
- •3.8 Уравнение Бернулли для потока реальной (вязкой) жидкости
- •3.9 Разность напоров и потери напора
- •3.10 Кавитация
- •3.11 Моделирование гидродинамических явлений
- •3.12.1 Режимы течения жидкости в трубах
- •3.12.2 Основные особенности турбулентного режима движения
- •3.12.3 Возникновение турбулентного течения жидкости
- •3.12.4 Возникновение ламинарного режима
- •3.13 Гидравлические сопротивления в потоках жидкости
- •3.13.2 Гидравлические потери по длине
- •3.13.3 Течение жидкости в шероховатых трубопроводах
- •Выводы из графиков Никурадзе
- •3.13.4 Ламинарное течение жидкости в трубах различного сечения
- •3.13.5 Местные гидравлические сопротивления
- •3) Постепенное расширение потока
- •4) Постепенное расширение потока
- •5) Поворот потока
- •3.14 Истечение жидкости из отверстий и насадков
- •3.14.1 Сжатие струи
- •3.14.2 Истечение через малое отверстие в тонкой стенке
- •3.14.3 Истечение через насадки
- •3.15 Гидравлический расчет трубопроводов
- •3.15.1 Виды трубопроводов
- •3.15.2 Расчет простого трубопровода
- •3.15.3 Последовательное соединение трубопроводов
- •3.15.4 Параллельное соединение трубопроводов
- •Если сечение трубы постоянно, то
- •3.16.2 Гидравлический удар в трубопроводах
- •3.16.3 Способы гашения и примеры использования гидравлического удара
- •Тема 4 Гидромашины
- •4.1 Общие сведения и классификация
- •4.2 Основные параметры гидромашин
- •4.3 Лопастные гидромашины
- •4.3.1 Кинематика движения жидкости
- •4.3.2 Основное уравнение лопастных машин
- •4.3.3 Характеристики лопастных машин
- •4.3.4 Эксплуатационные расчеты центробежных насосов
- •4.3.5 Конструктивные разновидности лопастных насосов
- •Центробежные консольные насосы
- •Осевые насосы
- •Вихревые насосы
- •4.4 Гидродинамические передачи
- •4.4.1 Общие сведения о гидродинамических передачах
- •4.4.2 Устройство и рабочий процесс гидромуфты
- •4.4.3 Устройство и рабочий процесс гидротрансформатора
- •4.5 Объемные гидромашины
- •4.5.1 Основные понятия
- •4.5.2 Классификация объемных гидромашин
- •4.5.3 Конструктивные разновидности объемных насосов Возвратно-поступательные насосы
- •Роторные радиально-поршневые гидромашины
- •Радиально-поршневой регулируемый насос с цапфенным распределением жидкости.
- •Радиально-поршневой насос с клапанным распределением жидкости.
- •Радиально-поршневой высокомоментный гидромотор.
- •Роторные аксиально-поршневые гидромашины
- •Шестеренные гидромашины
- •Насосы с шестернями внутреннего зацепления.
- •Винтовые насосы.
- •Пластинчатые гидромашины
- •Пластинчатые насосы одинарного действия.
- •Пластинчатые насосы двукратного действия.
- •4.5.4 Гидродвигатели прямолинейного и поворотного движения
- •Гидродвигатели прямолинейного движения
- •Гидродвигатели поворотного движения
- •Тема 5 Объемный гидропривод
- •5.1 Основные понятия
- •5.2 Принцип действия объемного гидропривода
- •5.3 Условные графические обозначения элементов
- •5.4 Классификация гидроприводов
- •1. По характеру движения выходного звена гидродвигателя:
- •2. По возможности регулирования:
- •3. По схеме циркуляции рабочей жидкости:
- •4. По источнику подачи рабочей жидкости:
- •5.5 Преимущества и недостатки гидропривода
- •5.6 Расчет простейшего гидропривода
- •5.6.2 Расчет простейшего поступательного гидропривода
- •5.7.1 Гидроприводы с дроссельным регулированием
- •1 Насос; 2 переливной клапан; 3 гидрораспределитель;
- •4 Гидроцилиндр; 5 гидродроссель; 6 бак
- •5.7.2 Гидропривод с объемным (машинным) регулированием
- •5.7.3 Гидропривод с объемно-дроссельным регулированием
- •5.7.4 Способы стабилизации скорости в гидроприводах
- •5.7.5 Системы синхронизации движения выходных звеньев
- •5.8 Следящие гидроприводы
- •5.8.1 Принцип действия и области применения
- •5.8.2 Следящие гидроприводы с дополнительными каскадами усиления
- •5.8.2 Электрогидравлические следящие приводы
- •6.1 Гидравлические линии
- •6.1.1 Трубопроводы
- •6.1.2 Соединения
- •6.2 Гидроаппаратура станков
- •6.2.1 Гидродроссели
- •6.2.2 Гидроклапаны
- •Направляющие гидроклапаны
- •Регулирующие гидроклапаны
- •6.2.3 Гидрораспределители
- •4/3 Типа пг74-24м с ручным управлением: 1, 9 – крышки корпуса; 2 – палец; 3 – ось; 4 – рукоятка; 5 – шарик; 6 – пружина; 7 – корпус; 8 – золотник; 10 – втулка
- •6.3 Вспомогательные устройства гидросистем
- •6.3.1 Гидробаки
- •6.3.2 Аппараты теплообменные
- •6.3.3 Фильтры
- •6.3.4 Гидроаккумуляторы
- •Содержание
- •Список литературы
Гидродвигатели поворотного движения
Поворотный гидродвигатель – это объемный гидродвигатель с ограниченным углом поворота выходного звена, причем, в зависимости от типа рабочего органа различают шиберный, поршневой и мембранный поворотные гидродвигатели.
Поворотные гидродвигатели конструктивно могут быть пластинчатыми (рисунок 4.31, а) и не пластинчатыми (рисунок 4.31, б).
а) б)
Рисунок 4.31 – Схемы поворотных гидродвигателей
Наибольшее распространение получили пластинчатые поворотные гидродвигатели, в которых рабочим органом является пластина, жестко заделанная в вал двигателя. Гидроцилиндры поворотного действия способны развивать большие крутящие моменты, достигающие для трехпластинчатых двигателей значения 70 МН·м при давлении жидкости 20 МПа. В качестве рабочей среды применяются воздух, масла и водные эмульсии.
Поворотный гидродвигатель (рисунок 4.31, а) состоит из корпуса 1 и поворотного ротора (вала) 2, несущего пластину 3. Кольцевая полость между внутренней поверхностью цилиндра и ротора разделена уплотнительной перемычкой 4 с пружинящим поджимом к ротору уплотнительного элемента 5. При подаче жидкости под давлением в верхний канал пластина 3 с втулкой 2 будет поворачиваться по часовой стрелке. Угол поворота вала цилиндра с одной рабочей пластиной обычно не превышает 270–280º.
Поворотные гидродвигатели выпускаются в одно-, двух- и трехпластинчатом исполнениях.
При применении двух- и трехпластинчатые поворотных гидроцилиндров можно соответственно увеличить крутящий момент; однако угол поворота при этом уменьшается. Углы поворота ротора при одной, двух и трех пластинах соответственно равны 280, 140 и 70°.
Гидродвигатели с преобразованием возвратно-поступательного движения во вращательное нашли широкое применение в станочном оборудовании.
Поворотное движение вала может быть также осуществлено преобразованием при помощи различных механических элементов прямолинейного поступательного движения поршня цилиндра.
В частности, в металлорежущих станках широко применяется поворотный механизм с шестерней и зубчатой рейкой (рисунок 4.31, б). Зубья рейки обычно нарезаются на скалке (поршне) цилиндра. Крутящий момент и поворотное движение передаются на выходной вал через шестерню, находящуюся в зацеплении с рейкой. В зависимости от длины рейки получают угол поворота от 90 до 360° и выше.
Тема 5 Объемный гидропривод
5.1 Основные понятия
Гидроприводом называется совокупность устройств, предназначенных для приведения в движение механизмов и машин посредством рабочей жидкости, находящейся под давлением, с одновременным выполнением функций регулирования и реверсирования скорости движения выходного звена гидродвигателя.
Гидроприводы могут быть двух типов: гидродинамические и объемные. В гидродинамических приводах используется в основном кинетическая энергия потока жидкости. В объемных гидроприводах используется потенциальная энергия давления рабочей жидкости.
Объемный гидропривод состоит из гидропередачи, устройств управления, вспомогательных устройств и гидролиний (рисунок 5.1).
Рисунок 5.1 - Состав объемного гидропривода
Объемная гидропередача, являющаяся силовой частью гидропривода, состоит из:
— объемного насоса (преобразователя механической энергии приводящего двигателя в энергию потока рабочей жидкости);
— объемного гидродвигателя (преобразователя энергии потока рабочей жидкости в механическую энергию выходного звена);
— гидроаккумулятора (гидроемкости, предназначенные для аккумулирования энергии рабочей жидкости, находящейся под давлением, с целью последующего ее использования для приведения в работу гидродвигателя);
— гидропреобразователя - объемной гидромашины для преобразования энергии потока рабочей жидкости с одними значениями давления р и расхода Q в энергию другого потока с другими значениями р и Q.
Устройства управления предназначены для управления потоком или другими устройствами гидропривода. При этом под управлением потоком понимается изменение или поддержание на определенном уровне давления и расхода в гидросистеме, а также изменение направления движения потока рабочей жидкости.
К устройствам управления относятся:
— гидрораспределители, служащие для изменения направления движения потока рабочей жидкости, обеспечения требуемой последовательности включения в работу гидродвигателей, реверсирования движения их выходных звеньев и т.д.;
— регуляторы давления (предохранительный, редукционный, переливной и другие клапаны), предназначенные для регулирования давления рабочей жидкости в гидросистеме;
— регуляторы расхода (делители и сумматоры потоков, дроссели и регуляторы потока, направляющие клапаны), с помощью которых управляют потоком рабочей жидкости;
— гидравлические усилители, необходимые для управления работой насосов, гидродвигателей или других устройств управления посредством рабочей жидкости с одновременным усилением мощности сигнала управления.
Вспомогательные устройства обеспечивают надежную работу всех элементов гидропривода. К ним относятся:
— кондиционеры рабочей жидкости (фильтры, теплообменные аппараты и др.);
— уплотнители, обеспечивающие герметизацию гидросистемы;
— гидравлические реле давления;
— гидроемкости (гидробаки и гидроаккумуляторы рабочей жидкости) и др.
Состав вспомогательных устройств устанавливают исходя из назначения гидропривода и условий, в которых он эксплуатируется.
Гидролинии (трубы, рукава высокого давления, каналы и соединения) предназначены для прохождения рабочей жидкости по ним в процессе работы объемного гидропривода. В зависимости от своего назначения гидролинии, входящие в общую гидросистему, подразделяются на всасывающие, напорные, сливные, дренажные и гидролинии управления.