
- •Введение
- •Тема 1 Введение. Предмет гидравлики. История развития гидравлики. Основные физико-механические свойства жидкостей и газов
- •1.1 Предмет гидравлики
- •1.2 История развития
- •1.3 Основные понятия
- •1.4 Основные физические свойства жидкостей
- •1.5 Выбор рабочей жидкости для гидросистем
- •1.6 Неньютоновские жидкости
- •Тема 2 Гидростатика
- •2.1 Понятие гидростатического давления
- •2.2 Свойства гидростатического давления
- •2.3 Поверхность уровня
- •2.4 Равновесие жидкости в поле земного тяготения
- •2.5 Основное уравнение гидростатики
- •2.6 Закон Паскаля и его технические применение
- •2.7 Абсолютное и избыточное давления. Вакуум
- •2.8 Приборы для измерения давления
- •2.9 Силы давления жидкости на плоскую стенку
- •2.10 Сила давления жидкости на криволинейную стенку
- •2.11 Закон Архимеда. Плавание тел
- •2.12 Гидростатический парадокс
- •Тема 3 Гидродинамика
- •3.1 Основные понятия
- •3.2 Расход потока жидкости
- •3.3 Закон сохранения массы. Уравнение неразрывности
- •3.4 Уравнение Бернулли для установившегося движения идеальной жидкости
- •3.5 Геометрическая интерпретация уравнения Бернулли
- •3.6 Энергетическая интерпретация уравнения Бернулли
- •3.7 Уравнение Бернулли для потока идеальной жидкости
- •3.8 Уравнение Бернулли для потока реальной (вязкой) жидкости
- •3.9 Разность напоров и потери напора
- •3.10 Кавитация
- •3.11 Моделирование гидродинамических явлений
- •3.12.1 Режимы течения жидкости в трубах
- •3.12.2 Основные особенности турбулентного режима движения
- •3.12.3 Возникновение турбулентного течения жидкости
- •3.12.4 Возникновение ламинарного режима
- •3.13 Гидравлические сопротивления в потоках жидкости
- •3.13.2 Гидравлические потери по длине
- •3.13.3 Течение жидкости в шероховатых трубопроводах
- •Выводы из графиков Никурадзе
- •3.13.4 Ламинарное течение жидкости в трубах различного сечения
- •3.13.5 Местные гидравлические сопротивления
- •3) Постепенное расширение потока
- •4) Постепенное расширение потока
- •5) Поворот потока
- •3.14 Истечение жидкости из отверстий и насадков
- •3.14.1 Сжатие струи
- •3.14.2 Истечение через малое отверстие в тонкой стенке
- •3.14.3 Истечение через насадки
- •3.15 Гидравлический расчет трубопроводов
- •3.15.1 Виды трубопроводов
- •3.15.2 Расчет простого трубопровода
- •3.15.3 Последовательное соединение трубопроводов
- •3.15.4 Параллельное соединение трубопроводов
- •Если сечение трубы постоянно, то
- •3.16.2 Гидравлический удар в трубопроводах
- •3.16.3 Способы гашения и примеры использования гидравлического удара
- •Тема 4 Гидромашины
- •4.1 Общие сведения и классификация
- •4.2 Основные параметры гидромашин
- •4.3 Лопастные гидромашины
- •4.3.1 Кинематика движения жидкости
- •4.3.2 Основное уравнение лопастных машин
- •4.3.3 Характеристики лопастных машин
- •4.3.4 Эксплуатационные расчеты центробежных насосов
- •4.3.5 Конструктивные разновидности лопастных насосов
- •Центробежные консольные насосы
- •Осевые насосы
- •Вихревые насосы
- •4.4 Гидродинамические передачи
- •4.4.1 Общие сведения о гидродинамических передачах
- •4.4.2 Устройство и рабочий процесс гидромуфты
- •4.4.3 Устройство и рабочий процесс гидротрансформатора
- •4.5 Объемные гидромашины
- •4.5.1 Основные понятия
- •4.5.2 Классификация объемных гидромашин
- •4.5.3 Конструктивные разновидности объемных насосов Возвратно-поступательные насосы
- •Роторные радиально-поршневые гидромашины
- •Радиально-поршневой регулируемый насос с цапфенным распределением жидкости.
- •Радиально-поршневой насос с клапанным распределением жидкости.
- •Радиально-поршневой высокомоментный гидромотор.
- •Роторные аксиально-поршневые гидромашины
- •Шестеренные гидромашины
- •Насосы с шестернями внутреннего зацепления.
- •Винтовые насосы.
- •Пластинчатые гидромашины
- •Пластинчатые насосы одинарного действия.
- •Пластинчатые насосы двукратного действия.
- •4.5.4 Гидродвигатели прямолинейного и поворотного движения
- •Гидродвигатели прямолинейного движения
- •Гидродвигатели поворотного движения
- •Тема 5 Объемный гидропривод
- •5.1 Основные понятия
- •5.2 Принцип действия объемного гидропривода
- •5.3 Условные графические обозначения элементов
- •5.4 Классификация гидроприводов
- •1. По характеру движения выходного звена гидродвигателя:
- •2. По возможности регулирования:
- •3. По схеме циркуляции рабочей жидкости:
- •4. По источнику подачи рабочей жидкости:
- •5.5 Преимущества и недостатки гидропривода
- •5.6 Расчет простейшего гидропривода
- •5.6.2 Расчет простейшего поступательного гидропривода
- •5.7.1 Гидроприводы с дроссельным регулированием
- •1 Насос; 2 переливной клапан; 3 гидрораспределитель;
- •4 Гидроцилиндр; 5 гидродроссель; 6 бак
- •5.7.2 Гидропривод с объемным (машинным) регулированием
- •5.7.3 Гидропривод с объемно-дроссельным регулированием
- •5.7.4 Способы стабилизации скорости в гидроприводах
- •5.7.5 Системы синхронизации движения выходных звеньев
- •5.8 Следящие гидроприводы
- •5.8.1 Принцип действия и области применения
- •5.8.2 Следящие гидроприводы с дополнительными каскадами усиления
- •5.8.2 Электрогидравлические следящие приводы
- •6.1 Гидравлические линии
- •6.1.1 Трубопроводы
- •6.1.2 Соединения
- •6.2 Гидроаппаратура станков
- •6.2.1 Гидродроссели
- •6.2.2 Гидроклапаны
- •Направляющие гидроклапаны
- •Регулирующие гидроклапаны
- •6.2.3 Гидрораспределители
- •4/3 Типа пг74-24м с ручным управлением: 1, 9 – крышки корпуса; 2 – палец; 3 – ось; 4 – рукоятка; 5 – шарик; 6 – пружина; 7 – корпус; 8 – золотник; 10 – втулка
- •6.3 Вспомогательные устройства гидросистем
- •6.3.1 Гидробаки
- •6.3.2 Аппараты теплообменные
- •6.3.3 Фильтры
- •6.3.4 Гидроаккумуляторы
- •Содержание
- •Список литературы
1.4 Основные физические свойства жидкостей
Рассмотрим физические свойства жидкостей, определяющие их поведение при гидравлических процессах и применение в различных областях техники.
К основным физическим свойствам жидкостей следует отнести те её свойства, которые определяют особенности поведения жидкости при её движении. Такими являются свойства, характеризующие концентрацию жидкости в пространстве, свойства, определяющие процессы деформации жидкости, определяющие величину внутреннего трения в жидкости при её движении, поверхностные эффекты.
1) Важнейшим физическим свойством жидкости, определяющим её концентрацию в пространстве, является плотность жидкости.
Рисунок 1.2 – К определению плотности
Выделим
малый объём жидкости или газа
(рисунок 1.2), окружающий точку М
в момент времени t.
Масса этого объёма будет
.
Плотностью ρ (кг/м3) называют массу жидкости, заключённую в единице объёма; для однородной жидкости определяется по формуле
,
т.е.
,
где
– масса жидкости в объёме
.
Плотность характеризует инерционные свойства сплошной среды и в общем случае зависит от координат точки и времени
.
Величины плотности реальных капельных жидкостей в стандартных условиях изменяются в системе единиц СИ в широких пределах от 700 кг/м 3 до 1800 кг/м 3. Плотность пресной воды равна 1000 кг/м3, солёной морской воды - 1020 ÷ 1030, нефти и нефтепродуктов – 650 ÷ 900 кг/м3, ртути – 13596 кг/м3.
Рисунок 1.3 – Зависимость плотности от температуры
Плотность жидкости зависит от температуры и давления. Все жидкости, кроме воды, характеризуются уменьшением плотности с ростом температуры. Плотность воды имеет максимум при t = 4 оC и уменьшается при любых других температурах (рисунок 1.3). В этом проявляется одно из аномальных свойств воды. Температура, при которой плотность воды максимальная, с увеличением давления уменьшается. Так, при давлении 14 МПа вода имеет максимальную плотность при 0,6 оC.
При изменении давления плотность жидкостей изменяется незначительно. В большинстве случаев плотность жидкости в расчётах можно принимать постоянной. Однако встречаются случаи, когда изменением плотности пренебрегать нельзя, т.к. это может привести к значительным ошибкам.
Удельным
весом
называют вес единицы объёма жидкости,
т.е.
.
Относительный вес (относительная плотность) жидкости. Иногда удобно использовать такую характеристику жидкости, которая называется «относительный удельный вес». Это отношение удельного веса жидкости к удельному весу пресной воды
,
где ρ в = 1000 кг/м3 – плотность воды при 4оС и давлении в 1 атм.
Единицы измерения: относительный удельный вес - величина безразмерная.
Если жидкость не однородна, то эти формулы определяют среднее значение удельного веса и плотности в данном объёме.
2) Сжимаемость – способность жидкости или газа под действием внешнего давления изменять свой объём а, следовательно, плотность.
Сжимаемость характеризуется коэффициентом βр объёмного сжатия, который представляет собой относительное изменение объёма, приходящегося на единицу давления, т.е.
или
м2/Н
(Па-1).
Знак « – » в формуле обусловлен тем, что положительному приращению (увеличению) давления р соответствует отрицательное приращение (уменьшение) объёма .
Рассматривая
конкретные изменения
и
,
и считая βр
постоянным, получаем формулу для
определения конечного объема при
изменении давления
м3,
или находим приближенную формулу для определения плотности
;
,
где
ρ и ρ0
– плотности при давлении
и
.
Капельные жидкости относятся к категории плохо сжимаемых тел, т.к. межмолекулярные расстояния в капельной жидкости малы и при деформации жидкости приходится преодолевать значительные силы отталкивания, действующие между молекулами, и даже испытывать влияние сил, действующих внутри атома. Тем не менее, сжимаемость жидкостей в 5 - 10 раз выше, чем сжимаемость твёрдых тел, т.е. можно считать, что все капельные жидкости обладают упругими свойствами.
Свойство, обратное сжимаемости называется упругостью среды. Характеризуется упругость объёмным модулем упругости Е, величиной обратной коэффициенту βр объёмного сжатия
Па,
МПа.
Жидкость характеризуется низкой сжимаемостью, т.е. высокой упругостью:
– для
воды,
– для нефти.
С упругостью среды связана важная характеристика – скорость звука в данной среде
м/с.
Следовательно,
характеристикой сжимаемости в состоянии
покоя служит скорость звука в данной
среде:
- в воде,
- в нефти.
3)
Температурное
расширение
– это свойство жидкостей изменять объем
при изменении температуры; характеризуется
температурным коэффициентом объемного
расширения βt,
который представляет собой относительное
изменение объёма (или плотности), при
изменении температуры
на 1°С и постоянном давлении, т.е.
или
°С-1.
Для большинства жидкостей коэффициент βt с увеличением давления уменьшается (рисунок 1.4).
Рисунок 1.4 - Зависимость коэффициента объемного расширения βt от давления р
Для воды с увеличением давления при температуре до 50 ºС коэффициент βt растет, а при температуре выше 50 ºС уменьшается.
Для большинства жидкостей коэффициент t с увеличением давления уменьшается. Коэффициент t с уменьшением плотности нефтепродуктов от 920 до 700 кг/м3 увеличивается от 0,0006 до 0,0008; для рабочих жидкостей гидросистем t обычно принимают не зависящим от температуры. Для этих жидкостей увеличение давления от атмосферного до 60 МПа приводит к росту t примерно на 10 – 20 %. При этом, чем выше температура рабочей жидкости, тем больше увеличение t.
Рассматривая
конечные приращения
и
,
и принимая βт
постоянным, получаем формулу для
определения конечного объема жидкости
при изменении температуры
м3.
Или находим приближенную формулу
кг/м3,
где
ρ0
и ρ - плотность при температурах
и
.
Т.е.
βt
имеет малые значения, и можно считать,
что плотность жидкости изменяется
незначительно при небольшом изменении
диапазона температур:
- для воды при Т
= 1°С и р
= 1 атм.
4) Растворение газов - способность жидкости поглощать (растворять) газы, находящиеся в соприкосновении с ней. Все жидкости в той или иной степени поглощают и растворяют газы. Это свойство характеризуется коэффициентом растворимости kр.
Рисунок 1.5 – Растворение газа в жидкостях
Относительное количество газа, которое может раствориться в жидкости до ее насыщения, прямо пропорционально давлению на поверхности раздела.
Если в закрытом сосуде (рисунок 1.5) жидкость находится в контакте с газом при давлении р1, то газ начнёт растворяться в жидкости. Через какое-то время произойдёт насыщение жидкости газом и давление в сосуде изменится. Коэффициент растворимости связывает изменение давления в сосуде с объёмом растворённого газа и объёмом жидкости следующим соотношением
где WГ – объём растворённого газа при нормальных условиях,
WЖ – объём жидкости,
р1 и р2 – начальное и конечное давление газа.
Коэффициент растворимости зависит от типа жидкости, газа и температуры.
При температуре 20 ºС и атмосферном давлении в воде содержится около 1,6% растворенного воздуха по объему (kp = 0,016). С увеличением температуры от 0 до 30 ºС коэффициент растворимости воздуха в воде уменьшается. Коэффициент растворимости воздуха в маслах при температуре 20 ºС равен примерно 0,08 – 0,1. Кислород отличается более высокой растворимостью, чем воздух, поэтому содержание кислорода в воздухе, растворенном в жидкости, примерно на 50% выше, чем в атмосферном. При уменьшении давления газ из жидкости выделяется. Процесс выделения газа протекает интенсивнее, чем растворение.
Наличие газа растворённого в жидкости может оказывать как благоприятное воздействие (снижается вязкость жидкости, плотность и т.д.), так и неблагоприятные факторы. Выделяющийся газ может оказаться не безопасным для окружающей среды, огнеопасным и взрывоопасным (углеводородный газ). Газ, растворённый в жидкости, как и газ в свободном состоянии может также способствовать коррозии стенок труб и оборудования, вызывать химические реакции, ведущие к образованию отложений твёрдых солей на стенках труб, накипей и др.
5) Кипение – способность жидкости переходить в газообразное состояние. Иначе это свойство жидкостей называют испаряемостью.
При понижении давления в жидкости происходит выделение растворенного в ней газа, который затем испаряется. Интенсивность процесса парообразования зависит от температуры кипения жидкости при нормальном атмосферном давлении: чем выше температура кипения жидкости, тем меньше её испаряемость. Характеристикой испаряемости является давление насыщенных паров рн.п.: чем выше температура, тем больше давление насыщенного пара жидкости.
В результате понижения давления в жидкости до давления рн.п при определенной температуре в ней образуются пузырьки, заполненные парами жидкости и газа, которые выделились из жидкости. Кипение жидкости может возникнуть в результате понижения давления при существенно меньшей температуре кипения t = 100 °С. Такое кипение получило название «холодное кипение».
6) Поверхностное натяжение.
Когда мы говорим о жидкости как о сплошной среде, это вовсе не означает, что эта среда бесконечна и безгранична. Жидкое тело всегда имеет границы, это либо твёрдые стенки каналов, либо границы раздела с газообразной средой, либо это граница раздела между различными несмешивающимися жидкостями. Такие границы можно с полным правом называть естественными границами. В некоторых случаях границы могут выделяться условно внутри самой движущейся жидкости. На естественных границах в пограничном слое жидкости между молекулами самой жидкости и молекулами окружающей жидкость среды существуют силы притяжения, которые, в общем случае, могут оказаться не равными. В то же время силы взаимодействия между остальными молекулами жидкости, находящимися внутри объёма, ограниченного пограничным слоем взаимно уравновешены. Таким образом, остаются не уравновешеными силы взаимодействия между молекулами, находящимися лишь во внешнем (пограничном слое). Тогда в пограничном слое возникают напряжения, которые автоматически балансируют не сбалансированные силы притяжения. Такие напряжения называются поверхностным натяжением жидкости. Этому напряжению будут соответствовать силы поверхностного натяжения. Под действием этих сил малые объёмы жидкости принимают сферическую форму (форму капли), соответствующей минимуму внутренней энергии; в трубках малого диаметра жидкость поднимается (или опускается) на некоторую высоту по отношению к уровню покоящейся жидкости (рисунок 1.6).
Рисунок 1.6 - Действие сил поверхностоного натяжения
Последнее явление носит название капиллярности: жидкость в трубке малого диаметра (капилляре) будет подниматься, если жидкость по отношению к стенке капилляра будет смачивающей жидкостью, и наоборот, будет опускаться, если жидкость для стенки капилляра окажется не смачивающей.
Высоту
h
подъёма (опускания) жидкости в капилляре
с диаметром d
можно определить из соотношения:
,
где А - постоянная зависящая от свойств жидкости.
Для
воды
,
для ртути
мм.
Силы поверхностного натяжения малы и проявляются при малых объёмах жидкости. Величина напряжений на границе раздела зависит от температуры жидкости; при увеличении температуры внутренняя энергия молекул возрастает и, естественно, уменьшается напряжение в пограничном слое жидкости и, следовательно, уменьшаются силы поверхностного натяжения.
7) Вязкость жидкостей
При движении реальной жидкости она расходуют часть своей механической энергии на работу против сил внутреннего трения. Эти потери механической энергии носят название диссипации (потери) энергии и представляют собой необратимый переход кинетической энергии потока в тепловую энергию молекулярного движения.
Вязкость представляет собой свойство жидкости сопротивляться сдвигу её слоёв и проявляется в результате её движения. Вязкость есть свойство противоположное текучести: более вязкие жидкости (глицерин, смазочные масла и т.д.) являются менее текучими, и наоборот.
Рисунок 1.7 - Действие сил внутреннего трения
При течении вязкой жидкости вдоль твёрдой стенки происходит торможение потока, обусловленное вязкостью (рисунок 1.7). Скорость u уменьшается по мере уменьшения расстояния y от стенки вплоть до u =0 при y =0, а между слоями происходит проскальзывание, сопровождающееся возникновением касательных напряжений, так называемых напряжений трения.
Напряжения, возникающие при деформации сдвига согласно гипотезе Ньютона пропорциональны градиенту скорости в движущихся слоях жидкости. Таким образом, закон жидкого трения Ньютона имеет вид
,
где μ - коэффициент пропорциональности, получивший название динамической вязкости жидкости;
du - приращение скорости, соответствующее приращению координаты dу.
Поперечный
градиент скорости
определяет изменение скорости,
приходящееся на единицу длины в
направлении нормали к стенке и,
следовательно, характеризует интенсивность
сдвига жидкости в данной точке.
При постоянстве касательного напряжения по поверхности S полная касательная сила (сила трения), действующая на этой поверхности
.
Динамическая вязкость жидкости имеет размерность Пуаз:
дин·с/см2
или
.
Помимо динамического коэффициента вязкости используется кинематический коэффициент вязкости:
,
Ст
Кинематическая вязкость жидкости имеет размерность Стокс:
=
10-4
м2/с.
По своему физическому смыслу коэффициент вязкости представляет собой коэффициент переноса импульса в движущейся сплошной среде, а закон жидкого трения Ньютона представляет собой закон переноса импульса.
Коэффициент вязкости является физической характеристикой сплошной среды и для нормальных жидкостей и всех газов (так называемых ньютоновских сплошных сред) не зависит от кинематических характеристик движения (т.е. от распределения скоростей).
Вязкость капельной жидкости зависит от температуры и уменьшается с увеличением последней (рисунок 1.8, а). Вязкость газов, наоборот, с увеличением температуры возрастает. Объясняется это различием природы вязкости в жидкостях и газах. В жидкостях молекулы расположены гораздо ближе друг к другу, чем в газах, и вязкость вызывается силами молекулярного сцепления. Эти силы с увеличением температуры уменьшаются, поэтому вязкость падает. В газах же вязкость обусловлена беспорядочным тепловым движением молекул, интенсивность которого увеличивается с повышением температуры. Поэтому вязкость газов с увеличением температуры возрастает.
Рисунок 1.8 – Зависимости вязкости от температуры и давления
Влияние температуры на вязкость определяется формулой
,
где μ и μ0 - вязкость при температуре Т и Т0;
β
– эмпирический коэффициент, значение
которого для масел изменяется в пределах
.
Вязкость жидкости зависит также от давления (рисунок 1.8, б), однако это проявляется при относительно больших значениях давления (более 20 30 МПа). С увеличением давления вязкость большинства жидкостей вырастает, и определяется формулой (законом Баруса)
,
где μ и μ0 - вязкость при давлении р и р0;
α
– пьезокоэффициент вязкости, значение
которого для минеральных масел изменяется
в пределах
1/МПа.
Вязкость минеральных масс при увеличении давления от 0 до 400атм приблизительно удваивается.
Вязкость жидкости измеряют при помощи вискозиметров. Наиболее распространенным является вискозиметр Энглера, который представляет собой цилиндрический сосуд диаметром 106 мм, с короткой трубкой диаметром 2,8 мм, встроенной в дно. Время t истечения 200 см3 испытуемой жидкости из вискозиметра через эту трубку под действием силы тяжести, деленной на время tвод истечения того же объема дистиллированной воды при 20 °С выражает вязкость в градусах Энглера: 1°Е=t/tвод , где tвод = 51,6 с. Формула для пересчёта градусов Энглера в стоксы в случае минеральных масел
.