Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций ГПП и ГПА ЗТМ_2014 .doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
25.29 Mб
Скачать

3.14.3 Истечение через насадки

Насадком называется короткая трубка длиной от двух до шести диаметров, присоединённая к выходу отверстия, через которое истекает жидкость. Роль насадка может выполнять и отверстие в толстой стенке, когда диаметр отверстия значительно меньше её толщины. Насадки отличаются формой и размерами. Наиболее существенные отличия между насадками состоят в форме входного отверстия, которая, как уже отмечалось выше, может существенно влиять на величину расхода при той же самой площади проходного сечения.

Рисунок 3.30 – Истечение жидкости через насадки

Простейшим насадком является цилиндрический насадок (рисунок 3.30). Течение в нём может происходить в двух разных режимах. В первом случае на острых входных кромках насадка происходит совершенное сжатие струи и далее она движется, не касаясь стенок насадка. В этом случае истечение ничем не отличается от истечения через малое отверстие в тонкой стенке. Скорость при этом истечении высокая, а расход минимален.

Во втором случае, как и при истечении через отверстие в тонкой стенке, струя жидкости вначале сжимается на некотором удалении от входного сечения, образуя вихревую зону, давление в этом сечении струи становится меньше атмосферного. Далее струя постепенно расширяется и заполняет всё сечение насадка. Из-за того, что сжатия на выходе насадка нет (ε = 1,0) а коэффициент расхода через такой насадок равняется .

При этом расход жидкости через насадок при прочих равных условиях превышает расход в первом случае, а скорость жидкости становится меньше из-за более высокого сопротивления.

а) б)

Рисунок 3.31 – Истечение жидкости через насадки

Ещё лучшие условия истечения наблюдаются при движении жидкости через так называемый тороидальный насадок (рисунок 3.31, а), который обеспечивает более высокий коэффициент расхода. Его значение, в зависимости от увеличения радиуса скругления кромки, доходит до .

Когда радиус кривизны становится больше длины насадка, насадок становится коноидальным (рисунок 3.31, б). Коэффициент расхода в таких условиях истечения приближается к значению .

3.15 Гидравлический расчет трубопроводов

3.15.1 Виды трубопроводов

Устройства, предназначенные для подвода рабочей жидкости от одного элемента к другому при работе гидропривода называют гидравлической линией. По назначению гидролинии делятся на:

  • всасывающие – для подвода жидкости к насосам;

  • напорные – для подачи жидкости к распределителям и гидродвигателям;

  • сливные – для отвода жидкости в резервуары;

  • дренажные – для отвода утечек от гидромашин и гидроаппаратов;

  • линии управления – для подвода жидкости к элементам гидропривода.

Существующие водопроводные, нефтепроводные, газовые сети делят на два типа:

  • магистральные трубопроводы, подающие ту или иную среду от источника к потребителю на большие расстояния;

  • разветвлённые сети труб, обеспечивающие распределение этой среды непосредственно потребителям.

С конструктивной точки зрения трубопроводы подразделяют на:

  • простые;

  • сложные;

  • короткие;

  • длинные.

Простыми называют трубопроводы, не имеющие ответвлений и обслуживающие только одну точку  x. Причем, диаметр трубы, а также расход жидкости на всей длине трубы остается неизменным.

Сложные трубопроводы делятся на тупиковые, параллельные и кольцевые.

Тупиковые состоят из магистрального (главного) трубопровода, от которого в разные стороны отходят ответвления к потребителям.

Параллельные состоят из нескольких параллельно проложенных трубопроводов, связанных между собой перемычками с регулирующими задвижками.

Кольцевые представляют собой замкнутую сеть труб, что обеспечивает подачу воды в любом направлении. При аварии на каком-либо участке подача воды потребителю не прекращается.

Трубопроводы, у которых местные потери напора составляют менее 10 % от потерь по длине, считаются гидравлически длинными, если же более 10 %, то гидравлически короткими.

Жидкость движется по трубопроводу благодаря тому, что ее энергия в начале трубопровода больше, чем в конце. Этот перепад может быть создан:

  • работой насоса;

  • благодаря разности уровней жидкости;

  • давлением газа.

В основном приходится иметь дело с такими трубопроводами, движение жидкости в которых обусловлено работой насоса.