- •Присадки к смазочным материалам
- •Антиокислительные и противокоррозионные присадки к маслам
- •Технология получения присадок ионол (Агидол-1) и нг-2246 (Агидол-2)
- •Технология получения присадоки дф-1 и дф-11.
- •Композиционные присадки
- •Сульфонатные моющие присадки
- •Алкилфенольные моющие присадки
- •Алкилсалицилатные моющие присадки
- •Технология получения алкилсалицилатных моющих присадок аск и mack
- •Диспергирующие присадки
- •Депрессорные и вязкостные (загущающие) присадки для масел
- •Технология депрессорно-вязкостной полиметакрилатной присадки пма-д
- •Осерненные полиолефины или олигомеры олефинов
- •Эфиры тиоугольной кислоты
- •Противоизносные присадки
- •Антифрикционные присадки (модификаторы трения)
- •Противопиттинговые присадки
- •Российский рынок присадок для масел
- •Производство присадок
- •Присадки для топлив
- •Модификаторы воспламенения Антидетонационные присадки
- •Антидетонаторы на основе соединений свинца
- •Антидетонаторы на основе ароматических аминов
- •Антидетонаторы на основе ферроцена и его производных
- •Антидетонаторы ад на основе соединений марганца
- •Промоторы воспламенения
- •Кислородосодержащие добавки к бензинам и дизтопливам (оксигенаты)
- •Оксигенатные добавки в бензины
- •Технология получения мтбэ
- •Применение биодизельных топлив и новых вариантов дизтоплив
- •Модификаторы горения
- •Присадки повышающие стабильность топлив
- •Моющие присадки
- •Присадки для эксплуатации топлив при низких температурах
- •Присадки для нефтей
Антиокислительные и противокоррозионные присадки к маслам
Эти присадки рассматриваются вместе, поскольку окисление масел и коррозия металла имеют единый радикальный механизм действия и часто подавляются одними и теме же добавками. Однако имеются существенные различия в действии разных типов присадок. Непосредственное окисление минеральных масел осуществляется за счет взаимодействия углеводородов с молекулярным кислородом, который может катализироваться металлическими поверхностями, поэтому термо-окислительные превращения компонентов масел протекают как в объеме, так и в тонком слое на нагретой металлической поверхности. Реакция окисления углеводородов масла начинается с образования свободных радикалов:
RH + O2 R* + HOO*
R* + O2 ROO*
ROO* + RH ROOH + R*
ROOH RO* + O*H
RO*+ RH ROH + R*
Факторами, ускоряющими окисление масел является: температура, природа металла, углеводородный состав масла. Например, Fe и Cu являются сильными катализаторами окисления. При более низких температурах в масле происходит накопление перекисей, а при более высоких температурах окисление идет более глубоко с образованием относительно устойчивых соединений – спиртов, кислот. По сравнению с другими углеводородами, арены являются более стабильными к окислению и кроме того, в качестве продукта дают фенолы, являющиеся ингибиторами окисления, т.е наличие большого количества аренов приводит к резкому замедлению окисления. Парафины в основном окисляются при относительно высоких температурах, нафтены не только достаточно легко окисляются, но и часто образуют с металлами соединения ускоряющие окисление, например нафтенаты меди, свинца. Наличие в маслах асфальтенов парализуют действие большинства сильных антиокислителей, поэтому большое влияние оказывает степень очистки масел. Для подавления процессов окисления и коррозии применяются вещества трех типов:
Образующие малоактивные радикалы при взаимодействии с активными радикальными продуктами окисления.
Вещества взаимодействующие с пероксидами и препятствующие их распаду на активные радикалы.
Вводимые в масла соединения этих двух типов обычно называют антиоксидантами.
Пассиваторы металлов – вещества, снижающие каталитическую активность металлических поверхностей в реакции окисления. Такие соединения образуют на поверхности тонкую пленку, связанную с металлом химически или за счет адсорбционных сил. Кроме того эти соединения препятствуют воздействию на металле образовавшихся в масле коррозионно-активных веществ, поэтому они являются эффективными противокоррозионными присадками. Однако и вещества первых двух типов тоже оказывают противокоррозионные действия, поскольку подавляют образование в масле таких коррозионно-активных соединений как органические кислоты.
На практике применяют следующие классы химических соединений в качестве антиокислителей
Класс соединений |
Тип действия |
Основные объекты применения |
Стерически затрудненные алкилфенолы |
Тип 1 |
Индустриальные и энергетические масла |
Ароматические амины |
||
Меркаптаны |
||
Сульфиды |
Тип 2 |
Применяются в основном в моторных маслах |
Фосфиты |
||
Тиофосфаты |
||
Аминосалициловые производные |
Тип 3 |
Могут применяться в разных маслах, но используются гораздо реже |
Азотосодержащие гетероциклы |
К алкилфенольным присадкам относятся соединения типа:
Образовавшийся радикал является стабильным, если соседние алкильные заместители занимают большой объем, препятствуя подходу к активному центру посторонних частиц. Это дополняет фактор электронной стабилизации за счет действия кольца. Наибольшее промышленное использование имеют соединения R` = C(CH3)3, тогда:
В наибольшем масштабе используются 4-метил-2,6-дитретбутилфенол, получаемый алкилированием паракрезола изобутиленом при кислотном катализе:
В России у него есть название Агидол-1 (см. технологическую схему).
Обычно ионол вводится в масла в количестве 0,2-0,3%, но в маловязких маслах при температуре больше 150 0С его дозы увеличиваются из-за относительно высокой летучести. Другим решением проблемы является применение менее летучего соединения аналогичной природы: 4,4-метиленбис (2,6-дитретбутилфенол). Его получают в две стадии:
Алкилирование фенола изобутиленом
Конденсация полученных полупродуктов с формальдегидом
Ароматические амины. Они образуют стабильные иминные радикалы:
В промышленности используют такие соединения как:
Ди(алкилфенил)амины
Производные фенилендиамин
Нафтиламины (α или β)
Меркаптаны. Они применяются редко, их действие основано на образовании не очень стабильных тиильных радикалов, превращающихся затем в замещенные сульфоксиды:
