
- •Часть 1
- •Содержание
- •Модуль 0 введение в курс теоретических основ электротехники, цели и задачи дисциплины
- •Учебно-информационная модель изучения дисциплины
- •Учебно-информационная модель изучения дисциплины (Окончание)
- •Научно-теоретический материал
- •Модуль 1 основные понятия и законы электрических цепей вводный комментарий к модулю
- •Учебно-информационная модель изучения модуля
- •Учебно-информационная модель изучения модуля (Продолжение)
- •Учебно-информационная модель изучения модуля (Окончание)
- •Словарь основных понятий
- •Основы научно-теоретических знаний по модулю
- •Материалы, используемые в процессе обучения Материалы к лекциям
- •Лекция 1 элементы и параметры электрических цепей
- •1.1 Электрическая цепь. Элементы электрической цепи
- •1.2 Электрическая схема и схемы замещения источников энергии
- •1.3 Ток, напряжение, эдс, мощность, энергия
- •Лекция 2 законы электрических цепей и их применение
- •1.4 Закон Ома для участка цепи, содержащего эдс
- •1.5 Законы Кирхгофа
- •1.6 Энергетический баланс в электрической цепи
- •Лекция 3 основные понятия о цепях синусоидального тока
- •1.7 Общие сведения о цепях переменного тока
- •1.8 Величины, характеризующие синусоидальный ток. Генерирование синусоидальной эдс
- •1.9 Среднее и действующее значения синусоидального тока, напряжения, эдс
- •1.10 Изображение синусоидально изменяющихся величин векторами и комплексными числами. Векторные диаграммы
- •1.11 Синусоидальный ток в активном, индуктивном и емкостном элементах
- •Лекция 4 закон ома, законы кирхгофа для цепи синусоидального тока
- •1.12 Синусоидальный ток в цепи с последовательным соединением активного, индуктивного и емкостного элементов
- •1.13 Закон Ома, законы Кирхгофа для цепей синусоидального тока
- •Лекция 5 энергетические процессы в цепях синусоидального тока
- •1.14 Мгновенная мощность и колебания энергии в цепи синусоидального тока
- •1.15 Активная, реактивная и полная мощности. Баланс мощностей
- •1.16 Условие передачи максимальной активной мощности от источника к приемнику
- •Контрольные вопросы и задачи для самостоятельного изучения цепей постоянного тока
- •Контрольные вопросы и задачи для самостоятельного изучения цепей синусоидального тока
- •Материалы к практическим занятиям
- •Практическое занятие 1 Применение закона Ома для расчета токов и напряжений
- •Практическое занятие 2 Применение законов Кирхгофа для расчета цепей постоянного тока
- •Практическое занятие 3 Применение закона Ома, законов Кирхгофа для расчета цепей синусоидального тока
- •Практическое занятие 4 Электрические цепи переменного тока со смешанным соединением элементов
- •Практическое занятие 5 Мощности в цепях переменного напряжения
- •Материалы к лабораторным занятиям
- •Лабораторное занятие 1 Экспериментальная проверка законов Кирхгофа в цепях постоянного тока
- •Лабораторное занятие 2 Исследование цепи переменного напряжения с последовательным соединением приемников
- •Лабораторное занятие 3 Исследование электрической цепи с параллельным и смешанным соединением элементов
- •Лабораторное занятие № 4 Измерение мощности и определение параметров приемника в цепи переменного тока
- •Материалы к управляемой самостоятельной работе по разделу «Методы расчета простых цепей постоянного тока»
- •Материалы к управляемой самостоятельной работе по разделу «Расчет электрической цепи синусоидального тока со смешанным соединением приемников»
- •Образец контрольных заданий по модулю 1
- •Образец контрольных заданий по модулю 1 (Окончание)
- •Модуль 2 методы расчета электрических цепей вводный комментарий к модулю
- •Учебно-информационная модель изучения модуля
- •Учебно-информационная модель изучения модуля (Окончание)
- •Словарь понятий для повторения
- •Основы научно-теоретических знаний
- •Материалы, используемые в процессе обучения Материалы к лекциям
- •Лекция 1 методы расчета простых электрических цепей и использование при расчете их свойств и преобразований
- •2.1 Расчет простых цепей при последовательном, параллельном и смешанном соединениях приемников
- •2.1.1 Расчет цепи при последовательном
- •2.1.2 Расчет цепи при параллельном соединении приемников
- •2.1.3 Расчет цепи при смешанном соединении приемников
- •2.2 Преобразование соединения «треугольником» в эквивалентное соединение «звездой» и обратно
- •2.3 Использование при расчете свойств электрических цепей
- •Лекция 2 методы расчета сложных электрических цепей
- •2.4 Метод уравнений Кирхгофа
- •2.5 Метод контурных токов
- •2.6 Метод узловых потенциалов
- •2.7 Метод двух узлов
- •2.8 Метод эквивалентного генератора
- •2.9 Матричный метод расчета линейных электрических цепей (для самостоятельной работы)
- •2.9.1 Геометрия электрических цепей
- •2.9.2 Топологические матрицы схем
- •2.9.3 Законы Кирхгофа в матричной форме
- •2.9.4 Закон Ома в матричной форме
- •2.9.5 Матричные уравнения контурных токов
- •2.9.6 Матричные уравнения узловых потенциалов
- •3.9.7 Порядок расчета электрических цепей матричным методом
- •Контрольные вопросы и задачи для самостоятельного решения
- •Материалы к практическим занятиям
- •Практическое занятие 1 Методы расчета сложных электрических цепей (уравнения Кирхгофа, контурных токов, узловых потенциалов)
- •Практическое занятие 2 Методы расчета сложных электрических цепей — 2-х узлов, эквивалентного генератора
- •Практическое занятие 3 Дополнение к методам расчета сложных цепей
- •Материалы к лабораторным занятиям Лабораторное занятие 1 Исследование свойств электрических цепей
- •Материалы к управляемой самостоятельной работе студентов
- •Образец контрольных заданий по модулю 2
- •Образец контрольных заданий по модулю 2 (Окончание)
- •Учебно-информационная модель изучения модуля
- •Учебно-информационная модель изучения модуля (Окончание)
- •Словарь основных понятий
- •Основы научно-теоретических знаний
- •Материалы, используемые в процессе обучения Материалы к лекциям
- •Лекция 1 резонансные явления в электрических цепях
- •3.1 Основные понятия о резонансе в электрических цепях
- •3.2 Резонанс напряжений
- •3.3 Частотные характеристики последовательного колебательного контура
- •3.4 Резонанс токов
- •3.5 Частотные характеристики параллельного контура
- •3.6 Компенсация сдвига фаз
- •3.7 Понятие о резонансе в разветвленных электрических цепях
- •Контрольные вопросы и задачи для самостоятельной работы
- •Вопросы для самоконтроля
- •Лекция 2 цепи со взаимной индуктивностью
- •3.8 Индуктивно-связанные элементы цепи
- •3.9 Электродвижущая сила взаимной индукции
- •3.10 Расчет электрических цепей при наличии индуктивно-связанных элементов
- •3.10.1 Последовательное соединение двух индуктивно-связанных катушек
- •3.10.2 Параллельное соединение двух индуктивно-связанных катушек
- •3.11 Опытное определение взаимной индуктивности
- •3.12 Воздушный трансформатор
- •Контрольные вопросы и задачи для самостоятельного решения
- •Лекция 3 несинусоидальные периодические эдс, напряжения и токи Общие сведения
- •3.12 Разложение периодической несинусоидальной кривой в тригонометрический ряд
- •3.13 Расчет мгновенных значений напряжений и токов в электрических цепях при действии периодических несинусоидальных эдс
- •3.14 Действующие значения периодических несинусоидальных токов, напряжений и эдс
- •3.15 Мощность в цепи несинусоидального тока
- •3.16 Замена несинусоидальных токов и напряжений эквивалентными синусоидальными
- •3.17 Зависимость формы кривой тока от характера цепи при несинусоидальном напряжении
- •Лекция 4 четырехполюсники
- •3.19 Четырехполюсники и их уравнения
- •3.20 Экспериментальное определение коэффициентов четырехполюсника
- •1. Опыт холостого хода при питании со стороны зажимов 1 и 1', . Зажимы 2 и 2' разомкнуты.
- •2. Опыт короткого замыкания при питании со стороны зажимов 1 и 1', . Зажимы 2 и 2' замкнуты накоротко.
- •3. Опыт короткого замыкания при питании со стороны зажимов 2 и 2', . Зажимы 1 и 1' замкнуты накоротко.
- •3.21 Эквивалентные схемы четырехполюсника
- •3.22 Характеристическое сопротивление и коэффициент передачи четырехполюсника
- •3.23 Электрические фильтры
- •Материалы к практическим занятиям
- •Практическое занятие 1 Резонанс в электрических цепях
- •Задачи для самостоятельного решения
- •Индивидуальные задания
- •Практическое занятие 2 Индуктивно-связанные цепи
- •Практическое занятие 3 Цепи с несинусоидальными токами
- •Практическое занятие 4 Мощность в цепи несинусоидального тока
- •Практическое занятие 5 Четырехполюсники
- •Материалы к лабораторным занятиям Лабораторная работа 1 Резонанс токов и компенсация сдвига фаз
- •Лабораторная работа № 2 Исследование режимов работы четырехполюсника
- •Материалы к управляемой самостоятельной работе студентов
- •Образец контрольных заданий по модулю 3
- •Образец контрольных заданий по модулю 3 (Окончание)
- •Задание для усрс
- •Литература Основная
- •Дополнительная
- •Теоретические основы электротехники
- •Часть 1
- •220023, Г. Минск, пр. Независимости, 99, к. 2.
1.3 Ток, напряжение, эдс, мощность, энергия
Электрический ток проводимости — явление направленного движения свободных носителей электрического заряда в веществе или вакууме. Ток проводимости — скалярная величина, равная производной по времени от электрического заряда dq сквозь рассматриваемую поверхность:
.
Носителями тока в проводниках являются электроны, в электролитах и газах — положительные и отрицательные ионы. Условно за направление электрического тока принимают направление движения положительных зарядов. Линии тока в электрической цепи замкнутые. Ток может идти, если есть путь к той точке, откуда он вышел. Численно значение тока равно количеству зарядов, проходящих через поперечное сечение проводника в единицу времени. Единица измерения тока в СИ — ампер (А).
Электрическое
напряжение
— скалярная величина, равная линейному
интегралу напряженности электрического
поля
:
.
Электрическое поле потенциальное. Потенциал в точке поля равен работе, совершаемой силой поля по перемещению единицы положительного заряда из какой-то точки (бесконечности) в данную точку поля. В электростатическом поле заряды перемещаются от точки с более высоким потенциалом к точке с более низким. Разность потенциалов двух точек есть работа, совершаемая силой поля по перемещению положительного заряда из одной точки в другую. Напряжение на участке цепи ab есть разность потенциалов точек a и b:
uab = φa – φb.
Напряжение в СИ измеряется в вольтах (В).
Положительное направление тока и напряжения в электрических схемах. Под положительным направлением тока принимают произвольное его направление и указывают стрелкой на схеме. Если ток в результате расчета получен с плюсом, то направление истинное. Если ток получен отрицательный, то направление тока противоположное указанному стрелкой (выбранному). Однако выбранное направление на схеме не меняют, а ток записывают со знаком минус. Если цепь содержит одну ЭДС, то ток идет от плюса к минусу.
Напряжение на элементе цепи совпадает по направлению с током в этом элементе. Поэтому стрелки направления напряжения ставят, когда есть необходимость. На генераторе и в других случаях напряжение указывают стрелкой от положительного зажима к отрицательному. Перед расчетом цепи нужно поставить положительное направление токов.
Электродвижущая сила (ЭДС) — скалярная величина, характеризующая способность стороннего поля и индуцированного электрического поля вызывать электрический ток. ЭДС равна линейному интегралу напряженности стороннего поля и индуцированного электрического поля вдоль рассматриваемого пути между двумя точками или вдоль рассматриваемого контура. Стороннее поле — поле сторонних сил с напряженностью, равной отношению сторонней силы, действующей на заряженную частицу к заряду этой частицы. Индуцированное электрическое поле — это электрическое поле, возбуждаемое изменением во времени магнитного поля.
В электростатическом поле (поле неподвижных заряженных тел при отсутствии в них электрических токов) заряды перемещаются от более высокого потенциала к более низкому. При этом разноименные заряды соединяются, и поле исчезает. Чтобы создать вновь электростатическое поле надо наличие сторонних сил, направленных против Кулоновских сил, способных разобщать связанные заряды. Сторонние силы (стороннее поле) находятся внутри источника электрической энергии. Сторонняя сила — сила, действующая на заряженную частицу, обусловленная неэлектромагнитными, при макроскопическом рассмотрении, процессами. К таким неэлектромагнитным процессам следует относить, например, тепловые процессы, химические реакции, воздействие механических сил, контактные явления.
Развиваемая источником энергии мощность определяется равенством:
.
(1.6)
Сопротивление приемника R (рисунки 1.9, 1.11) характеризует потребление электрической энергии, т.е. превращение электрической энергии в тепловую:
.
(1.7)
Численно сопротивление определяют отношением приложенного к нему напряжения U к протекающему току I (закон Ома):
.
Электрическая энергия — это мощность, выделяемая за определенное время. Мгновенная мощность равна произведению мгновенного напряжения на мгновенный ток на одном и том же участке цепи:
p = ui.
Электрическая энергия
,
где W — энергия, Дж; 1 Дж = 1 Втс;
p — мгновенная мощность, Вт.
При прохождении тока через резистор в нем выделяется тепловая энергия, прямо пропорциональная квадрату тока, сопротивлению резистора и времени протекания тока:
.
При постоянном
токе
.